Young Sung Jung, Davin Jang, Mi-Seon Kim, Chi Heung Cho, Hyunbin Seong, Sang-Ho Yoo, Dong-Ho Seo, Dae-Ok Kim
{"title":"Differences in in vitro bioavailability, bioaccessibility, and antioxidant capacity depending on linkage type of luteolin 4'-O-glucosides.","authors":"Young Sung Jung, Davin Jang, Mi-Seon Kim, Chi Heung Cho, Hyunbin Seong, Sang-Ho Yoo, Dong-Ho Seo, Dae-Ok Kim","doi":"10.1016/j.foodres.2025.115746","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of glycosylation on the antioxidant capacities of luteolin by analyzing the differences in in vitro bioaccessibility, bioavailability, and bioactivity based on glucose anomers. Luteolin, luteolin 4'-O-alpha-glucoside (L4αG), and luteolin 4'-O-beta-glucoside (L4βG) were used to obtain clear and direct research results, excluding the influence of complex food matrices. L4αG exhibited lower water solubility, digestive stability, and aglycone-releasing ability compared to L4βG. However, L4αG most effectively alleviated intracellular oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced Caco-2 cells by inhibiting the mitogen-activated protein kinases and activating nuclear factor erythroid-2-related factor signaling pathways. The findings suggested that the alpha-anomer of glucose in L4αG significantly (p < 0.05) enhanced intracellular antioxidant capacity by activating the cellular antioxidant enzyme systems rather than acting as an exogenous scavenger compared to L4βG. This study highlights a new approach for exploring natural antioxidants based on flavonoid aglycones with high cell affinity and electron-donating capacity.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115746"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of glycosylation on the antioxidant capacities of luteolin by analyzing the differences in in vitro bioaccessibility, bioavailability, and bioactivity based on glucose anomers. Luteolin, luteolin 4'-O-alpha-glucoside (L4αG), and luteolin 4'-O-beta-glucoside (L4βG) were used to obtain clear and direct research results, excluding the influence of complex food matrices. L4αG exhibited lower water solubility, digestive stability, and aglycone-releasing ability compared to L4βG. However, L4αG most effectively alleviated intracellular oxidative stress in H2O2-induced Caco-2 cells by inhibiting the mitogen-activated protein kinases and activating nuclear factor erythroid-2-related factor signaling pathways. The findings suggested that the alpha-anomer of glucose in L4αG significantly (p < 0.05) enhanced intracellular antioxidant capacity by activating the cellular antioxidant enzyme systems rather than acting as an exogenous scavenger compared to L4βG. This study highlights a new approach for exploring natural antioxidants based on flavonoid aglycones with high cell affinity and electron-donating capacity.