Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile.

Q3 Medicine
Rebekah E Dadey, Jian Cui, Dhivyaa Rajasundaram, Hiroshi Yano, Chang Liu, Jonathan A Cohen, Andrew W Liu, Daniel H Kaplan, Creg J Workman, Dario A A Vignali
{"title":"Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile.","authors":"Rebekah E Dadey, Jian Cui, Dhivyaa Rajasundaram, Hiroshi Yano, Chang Liu, Jonathan A Cohen, Andrew W Liu, Daniel H Kaplan, Creg J Workman, Dario A A Vignali","doi":"10.1093/immhor/vlae014","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlae014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信