Dynamic optimizers for complex industrial systems via direct data-driven synthesis.

Khalid Alhazmi, S Mani Sarathy
{"title":"Dynamic optimizers for complex industrial systems via direct data-driven synthesis.","authors":"Khalid Alhazmi, S Mani Sarathy","doi":"10.1038/s44172-025-00368-8","DOIUrl":null,"url":null,"abstract":"<p><p>The chemical process industry (CPI) faces significant challenges in improving sustainability and efficiency while maintaining conservative principles for managing cost, complexity, and uncertainty. This work introduces a data-driven approach to dynamic real-time optimization (D-RTO) that addresses the aforementioned concerns by directly extracting process optimization policies from historical plant data. Our method constructs a value function to evaluate trajectory quality and employs weighted regression to derive improved policies. When applied to a plant-wide industrial process control problem, the proposed optimizer demonstrates superior performance in adapting to disturbances while maintaining stability and product quality. These results challenge conventional assumptions regarding the potential of data-driven optimization in the CPI. Although limitations exist due to the black-box nature of neural networks, this study presents a promising avenue for enhancing operational efficiency in industrial settings. The proposed approach offers a practical solution for process optimization, as it leverages readily available historical data and does not require extensive modeling efforts. By demonstrating significant efficiency improvement on a realistic industrial benchmark problem, this work paves the way for the adoption of data-driven optimization techniques in real-world CPI applications.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00368-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical process industry (CPI) faces significant challenges in improving sustainability and efficiency while maintaining conservative principles for managing cost, complexity, and uncertainty. This work introduces a data-driven approach to dynamic real-time optimization (D-RTO) that addresses the aforementioned concerns by directly extracting process optimization policies from historical plant data. Our method constructs a value function to evaluate trajectory quality and employs weighted regression to derive improved policies. When applied to a plant-wide industrial process control problem, the proposed optimizer demonstrates superior performance in adapting to disturbances while maintaining stability and product quality. These results challenge conventional assumptions regarding the potential of data-driven optimization in the CPI. Although limitations exist due to the black-box nature of neural networks, this study presents a promising avenue for enhancing operational efficiency in industrial settings. The proposed approach offers a practical solution for process optimization, as it leverages readily available historical data and does not require extensive modeling efforts. By demonstrating significant efficiency improvement on a realistic industrial benchmark problem, this work paves the way for the adoption of data-driven optimization techniques in real-world CPI applications.

通过直接数据驱动合成的复杂工业系统的动态优化器。
化学过程工业(CPI)在提高可持续性和效率方面面临着重大挑战,同时保持管理成本、复杂性和不确定性的保守原则。这项工作引入了一种数据驱动的动态实时优化(D-RTO)方法,通过直接从历史工厂数据中提取过程优化策略来解决上述问题。我们的方法构建了一个价值函数来评估轨迹质量,并使用加权回归来得出改进的策略。当应用于工厂范围的工业过程控制问题时,所提出的优化器在适应干扰的同时保持稳定性和产品质量方面表现出优异的性能。这些结果挑战了关于CPI中数据驱动优化潜力的传统假设。尽管由于神经网络的黑箱特性存在局限性,但本研究为提高工业环境中的操作效率提供了一条有希望的途径。所建议的方法为流程优化提供了一个实用的解决方案,因为它利用了随时可用的历史数据,并且不需要大量的建模工作。通过在实际工业基准问题上展示显著的效率改进,这项工作为在实际CPI应用程序中采用数据驱动的优化技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信