Sulfated galactan from Acanthophora muscoides inhibits adipogenesis via regulating adipogenic transcription factors and AMPK in 3T3-L1 cells.

Q2 Agricultural and Biological Sciences
Brazilian Journal of Biology Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.1590/1519-6984.289036
A V L Silva, R P Lima, F T B Oliveira, A L G Quinderé, N M B Benevides, F A Santos
{"title":"Sulfated galactan from Acanthophora muscoides inhibits adipogenesis via regulating adipogenic transcription factors and AMPK in 3T3-L1 cells.","authors":"A V L Silva, R P Lima, F T B Oliveira, A L G Quinderé, N M B Benevides, F A Santos","doi":"10.1590/1519-6984.289036","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a global public health issue, closely linked to cardiovascular disease and type 2 diabetes. Pharmacological interventions for weight loss are one option for treating obesity; however, these drugs often come with side effects or limited efficacy, highlighting the need for new therapies. Marine algae offer a promising source of biologically active compounds for human health, including antidiabetic, anti-inflammatory, and anti-obesity properties. Sulfated galactan isolated from the red marine algae Acanthophora muscoides (SGAM) has demonstrated diverse biological activities including anti-inflammatory activity in vivo and in vitro studies. However, its potential impact on adipogenesis remains unexplored. This study evaluated the effect of SGAM on adipogenesis in 3T3-L1 cells using Oil Red O staining and analyzed the protein expression of key transcription factors associated with adipogenesis. SGAM (25-100 μg/mL) was found to reduce intracellular lipid accumulation in adipocytes without compromising cell viability. Furthermore, our findings suggest that SGAM significantly inhibits adipocyte differentiation by downregulating the expression of key adipogenesis-related transcription factors, including C/EBPβ, C/EBPδ, C/EBPα, and PPARγ. Additionally, SGAM reduced the protein expression of SREBP-1 and promoted the activation of AMPK. In conclusion, SGAM inhibits adipogenesis by negatively modulating the expression of the main adipogenic transcription factors and activating AMPK.</p>","PeriodicalId":55326,"journal":{"name":"Brazilian Journal of Biology","volume":"85 ","pages":"e289036"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1519-6984.289036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a global public health issue, closely linked to cardiovascular disease and type 2 diabetes. Pharmacological interventions for weight loss are one option for treating obesity; however, these drugs often come with side effects or limited efficacy, highlighting the need for new therapies. Marine algae offer a promising source of biologically active compounds for human health, including antidiabetic, anti-inflammatory, and anti-obesity properties. Sulfated galactan isolated from the red marine algae Acanthophora muscoides (SGAM) has demonstrated diverse biological activities including anti-inflammatory activity in vivo and in vitro studies. However, its potential impact on adipogenesis remains unexplored. This study evaluated the effect of SGAM on adipogenesis in 3T3-L1 cells using Oil Red O staining and analyzed the protein expression of key transcription factors associated with adipogenesis. SGAM (25-100 μg/mL) was found to reduce intracellular lipid accumulation in adipocytes without compromising cell viability. Furthermore, our findings suggest that SGAM significantly inhibits adipocyte differentiation by downregulating the expression of key adipogenesis-related transcription factors, including C/EBPβ, C/EBPδ, C/EBPα, and PPARγ. Additionally, SGAM reduced the protein expression of SREBP-1 and promoted the activation of AMPK. In conclusion, SGAM inhibits adipogenesis by negatively modulating the expression of the main adipogenic transcription factors and activating AMPK.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
301
审稿时长
4-8 weeks
期刊介绍: The BJB – Brazilian Journal of Biology® is a scientific journal devoted to publishing original articles in all fields of the Biological Sciences, i.e., General Biology, Cell Biology, Evolution, Biological Oceanography, Taxonomy, Geographic Distribution, Limnology, Aquatic Biology, Botany, Zoology, Genetics, and Ecology. Priority is given to papers presenting results of researches in the Neotropical region. Material published includes research papers, review papers (upon approval of the Editorial Board), notes, book reviews, and comments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信