Effects of gamma radiations on morphological and biochemical traits of Pisum sativum L. under heavy metal (NiCl2) stress.

Q2 Agricultural and Biological Sciences
Brazilian Journal of Biology Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.1590/1519-6984.287016
F Ullah, M Irfan, S Khatoon, S Khalil, A Sher, N Alsulami, Y Anwar, A Rauf, A A Mujawah, L S Wong, M Harshini, V Subramaniyan
{"title":"Effects of gamma radiations on morphological and biochemical traits of Pisum sativum L. under heavy metal (NiCl2) stress.","authors":"F Ullah, M Irfan, S Khatoon, S Khalil, A Sher, N Alsulami, Y Anwar, A Rauf, A A Mujawah, L S Wong, M Harshini, V Subramaniyan","doi":"10.1590/1519-6984.287016","DOIUrl":null,"url":null,"abstract":"<p><p>The exposure of plant seeds to gamma radiation is a promising prospect to crop improvement through the manipulation of their genetic makeup. Previous studies have shed light on the potential of radiation to enhance the genetic variability. In this study, we investigated the effect of gamma radiation on Pisum sativum seeds under heavy metal (nickel chloride) stress to determine the changes in morpho-biochemical attributes. Morphological parameters such as germination and photosynthetic pigments while biochemical attributes such as protein content, sugar, phenolics, and flavonoids were determined. The results showed that gamma radiation, along with (NiCl2) has a pronounced effect on plant morphology and production. In the biochemical analysis of the range from 50 Gy to 100 Gy, photosynthetic pigments and proteins were significantly associated. Although the 50 Gy dose induced a partial reduction in sugar content while the 100 Gy dose demonstrated a slight improvement relative to the 50 Gy dose. However, the phenol content increased in response to 50 Gy, whereas the flavonoid content decreased compared to the control. In combination with heavy metal (50mM) at Gy doses, the protein, sugar, phenol, and flavonoid contents showed a gradual decrease with the increase in Gy doses. In conclusion, the current study based on observations suggests that the range of gamma radiation from 50 Gy to 100 Gy is suitable for causing the mutant form of seeds. However, further studies should be conducted to determine the precise mechanism, in order to be benefitted from full potential role of gamma radiation in improving productivity under heavy metal stress.</p>","PeriodicalId":55326,"journal":{"name":"Brazilian Journal of Biology","volume":"84 ","pages":"e287016"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1519-6984.287016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The exposure of plant seeds to gamma radiation is a promising prospect to crop improvement through the manipulation of their genetic makeup. Previous studies have shed light on the potential of radiation to enhance the genetic variability. In this study, we investigated the effect of gamma radiation on Pisum sativum seeds under heavy metal (nickel chloride) stress to determine the changes in morpho-biochemical attributes. Morphological parameters such as germination and photosynthetic pigments while biochemical attributes such as protein content, sugar, phenolics, and flavonoids were determined. The results showed that gamma radiation, along with (NiCl2) has a pronounced effect on plant morphology and production. In the biochemical analysis of the range from 50 Gy to 100 Gy, photosynthetic pigments and proteins were significantly associated. Although the 50 Gy dose induced a partial reduction in sugar content while the 100 Gy dose demonstrated a slight improvement relative to the 50 Gy dose. However, the phenol content increased in response to 50 Gy, whereas the flavonoid content decreased compared to the control. In combination with heavy metal (50mM) at Gy doses, the protein, sugar, phenol, and flavonoid contents showed a gradual decrease with the increase in Gy doses. In conclusion, the current study based on observations suggests that the range of gamma radiation from 50 Gy to 100 Gy is suitable for causing the mutant form of seeds. However, further studies should be conducted to determine the precise mechanism, in order to be benefitted from full potential role of gamma radiation in improving productivity under heavy metal stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
301
审稿时长
4-8 weeks
期刊介绍: The BJB – Brazilian Journal of Biology® is a scientific journal devoted to publishing original articles in all fields of the Biological Sciences, i.e., General Biology, Cell Biology, Evolution, Biological Oceanography, Taxonomy, Geographic Distribution, Limnology, Aquatic Biology, Botany, Zoology, Genetics, and Ecology. Priority is given to papers presenting results of researches in the Neotropical region. Material published includes research papers, review papers (upon approval of the Editorial Board), notes, book reviews, and comments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信