Distinct Patterns of PV and SST GABAergic Neuronal Activity in the Basal Forebrain during Olfactory-Guided Behavior in Mice.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Elizabeth H Moss, Evelyne K Tantry, Elaine Le, Pey-Shyuan Chin, Priscilla Ambrosi, Katie L Brandel-Ankrapp, Benjamin R Arenkiel
{"title":"Distinct Patterns of PV and SST GABAergic Neuronal Activity in the Basal Forebrain during Olfactory-Guided Behavior in Mice.","authors":"Elizabeth H Moss, Evelyne K Tantry, Elaine Le, Pey-Shyuan Chin, Priscilla Ambrosi, Katie L Brandel-Ankrapp, Benjamin R Arenkiel","doi":"10.1523/JNEUROSCI.0200-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory perception relies on the flexible detection and interpretation of stimuli across variable contexts, conditions, and behavioral states. The basal forebrain (BF) is a hub for behavioral state regulation, supplying dense cholinergic and GABAergic projections to various brain regions involved in sensory processing. Of GABAergic neurons in the BF, parvalbumin (PV) and somatostatin (SST) subtypes serve opposing roles toward regulating behavioral states. To elucidate the role of BF circuits in sensory-guided behavior, we investigated GABAergic signaling dynamics during odor-guided decision-making in male and female mice. We used fiber photometry to record cell type-specific BF activity during an odor discrimination task and correlated temporal patterns of PV and SST neuronal activity with olfactory task performance. We found that while both PV-expressing and SST-expressing GABAergic neurons were excited during trial initiation, PV neurons were selectively suppressed by reward, whereas SST neurons were excited. Notably, chemogenetic inhibition of BF SST neurons modestly altered decision bias to favor reward seeking, while optogenetic inhibition of BF PV neurons during odor presentations improved discrimination accuracy. Together, these results suggest that the bidirectional activity of GABAergic BF neuron subtypes distinctly influence perception and decision-making during olfactory-guided behavior.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0200-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sensory perception relies on the flexible detection and interpretation of stimuli across variable contexts, conditions, and behavioral states. The basal forebrain (BF) is a hub for behavioral state regulation, supplying dense cholinergic and GABAergic projections to various brain regions involved in sensory processing. Of GABAergic neurons in the BF, parvalbumin (PV) and somatostatin (SST) subtypes serve opposing roles toward regulating behavioral states. To elucidate the role of BF circuits in sensory-guided behavior, we investigated GABAergic signaling dynamics during odor-guided decision-making in male and female mice. We used fiber photometry to record cell type-specific BF activity during an odor discrimination task and correlated temporal patterns of PV and SST neuronal activity with olfactory task performance. We found that while both PV-expressing and SST-expressing GABAergic neurons were excited during trial initiation, PV neurons were selectively suppressed by reward, whereas SST neurons were excited. Notably, chemogenetic inhibition of BF SST neurons modestly altered decision bias to favor reward seeking, while optogenetic inhibition of BF PV neurons during odor presentations improved discrimination accuracy. Together, these results suggest that the bidirectional activity of GABAergic BF neuron subtypes distinctly influence perception and decision-making during olfactory-guided behavior.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信