A model of audio-visual motion integration during active self-movement.

IF 2 4区 心理学 Q2 OPHTHALMOLOGY
Maria Gallagher, Joshua D Haynes, John F Culling, Tom C A Freeman
{"title":"A model of audio-visual motion integration during active self-movement.","authors":"Maria Gallagher, Joshua D Haynes, John F Culling, Tom C A Freeman","doi":"10.1167/jov.25.2.8","DOIUrl":null,"url":null,"abstract":"<p><p>Despite good evidence for optimal audio-visual integration in stationary observers, few studies have considered the impact of self-movement on this process. When the head and/or eyes move, the integration of vision and hearing is complicated, as the sensory measurements begin in different coordinate frames. To successfully integrate these signals, they must first be transformed into the same coordinate frame. We propose that audio and visual motion cues are separately transformed using self-movement signals, before being integrated as body-centered cues to audio-visual motion. We tested this hypothesis using a psychophysical audio-visual integration task in which participants made left/right judgments of audio, visual, or audio-visual targets during self-generated yaw head rotations. Estimates of precision and bias from the audio and visual conditions were used to predict performance in the audio-visual conditions. We found that audio-visual performance was predicted well by models that suggested the transformation of cues into common coordinates but could not be explained by a model that did not rely on coordinate transformation before integration. We also found that precision specifically was better predicted by a model that accounted for shared noise arising from signals encoding head movement. Taken together, our findings suggest that motion perception in active observers is based on the integration of partially correlated body-centered signals.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"25 2","pages":"8"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.25.2.8","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite good evidence for optimal audio-visual integration in stationary observers, few studies have considered the impact of self-movement on this process. When the head and/or eyes move, the integration of vision and hearing is complicated, as the sensory measurements begin in different coordinate frames. To successfully integrate these signals, they must first be transformed into the same coordinate frame. We propose that audio and visual motion cues are separately transformed using self-movement signals, before being integrated as body-centered cues to audio-visual motion. We tested this hypothesis using a psychophysical audio-visual integration task in which participants made left/right judgments of audio, visual, or audio-visual targets during self-generated yaw head rotations. Estimates of precision and bias from the audio and visual conditions were used to predict performance in the audio-visual conditions. We found that audio-visual performance was predicted well by models that suggested the transformation of cues into common coordinates but could not be explained by a model that did not rely on coordinate transformation before integration. We also found that precision specifically was better predicted by a model that accounted for shared noise arising from signals encoding head movement. Taken together, our findings suggest that motion perception in active observers is based on the integration of partially correlated body-centered signals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信