{"title":"The cholesterol 24-hydroxylase CYP46A1 promotes α-synuclein pathology in Parkinson's disease.","authors":"Lijun Dai, Jiannan Wang, Lanxia Meng, Xingyu Zhang, Tingting Xiao, Min Deng, Guiqin Chen, Jing Xiong, Wei Ke, Zhengyuan Hong, Lihong Bu, Zhentao Zhang","doi":"10.1371/journal.pbio.3002974","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3002974"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002974","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.