Haitao Xie, Chengkai Li, Zhiwei Ye, Tao Zhao, Hui Xu, Jiangyi Du, Wanfang Bai
{"title":"Cloud Resource Scheduling Using Multi-Strategy Fused Honey Badger Algorithm.","authors":"Haitao Xie, Chengkai Li, Zhiwei Ye, Tao Zhao, Hui Xu, Jiangyi Du, Wanfang Bai","doi":"10.1089/big.2023.0146","DOIUrl":null,"url":null,"abstract":"<p><p>Cloud resource scheduling is one of the most significant tasks in the field of big data, which is a combinatorial optimization problem in essence. Scheduling strategies based on meta-heuristic algorithms (MAs) are often chosen to deal with this topic. However, MAs are prone to falling into local optima leading to decreasing quality of the allocation scheme. Algorithms with good global search ability are needed to map available cloud resources to the requirements of the task. Honey Badger Algorithm (HBA) is a newly proposed algorithm with strong search ability. In order to further improve scheduling performance, an Improved Honey Badger Algorithm (IHBA), which combines two local search strategies and a new fitness function, is proposed in this article. IHBA is compared with 6 MAs in four scale load tasks. The comparative simulation results obtained reveal that the proposed algorithm performs better than other algorithms involved in the article. IHBA enhances the diversity of algorithm populations, expands the individual's random search range, and prevents the algorithm from falling into local optima while effectively achieving resource load balancing.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"13 1","pages":"59-72"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0146","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud resource scheduling is one of the most significant tasks in the field of big data, which is a combinatorial optimization problem in essence. Scheduling strategies based on meta-heuristic algorithms (MAs) are often chosen to deal with this topic. However, MAs are prone to falling into local optima leading to decreasing quality of the allocation scheme. Algorithms with good global search ability are needed to map available cloud resources to the requirements of the task. Honey Badger Algorithm (HBA) is a newly proposed algorithm with strong search ability. In order to further improve scheduling performance, an Improved Honey Badger Algorithm (IHBA), which combines two local search strategies and a new fitness function, is proposed in this article. IHBA is compared with 6 MAs in four scale load tasks. The comparative simulation results obtained reveal that the proposed algorithm performs better than other algorithms involved in the article. IHBA enhances the diversity of algorithm populations, expands the individual's random search range, and prevents the algorithm from falling into local optima while effectively achieving resource load balancing.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.