The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Muhammad Hanif Azhar, Devrim Memiş
{"title":"The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system.","authors":"Muhammad Hanif Azhar, Devrim Memiş","doi":"10.1002/wer.70046","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing nutrient concentrations in fish culture systems over time can reduce water quality. However, the nutrient increase can be remediated by pairing organisms at lower trophic levels with a mechanical filtration system to improve nutrient removal efficiency and water quality for fish culture. This research uses the RAS system to determine the performance of integrating living organisms as biofilters in rearing juvenile rainbow trout (Oncorhynchus mykiss) for 56 days. Duckweed (Lemna minor) was added to replicate tanks at three treatment levels: T1 (100 g wet weight and 20% area coverage), T2 (200 g wet weight and 40% area coverage), and T3 (300g wet weight and 60% area coverage). The duckweed in each treatment tank was supplemented with 20 freshwater mussels (Anodonta cygnea) with an average body weight of 56 ± 1.0 g. Physical and chemical water quality parameters were measured in fish tanks and all ponds in the RAS system. Fish from the rearing tanks were weighed every two weeks. Duckweed biomass was measured weekly; the mussels were weighed at the beginning and end of the study, and the mussels were measured at the beginning and end of the rearing period. The fish was partially harvested every two weeks to maintain constant fish biomass. Using duckweed (L. minor) with different biomass weights and areal coverage, coupled with the freshwater mussels (A. cygnea) as living biofilters, had a significant effect (P < 0.05) on water quality parameters. Ammonium (NH<sub>4</sub>), nitrite (NO<sub>2</sub>), and nitrate (NO<sub>3</sub>) concentrations decreased throughout the study. During the study period, juvenile trout experienced growth with an SGR of 2.62-2.72%/gram with a survival rate of 100%. Partial harvesting during the rearing period positively impacted the average body weight of fish growth and duckweed biomass. The best duckweed growth performance was found in treatment T1 (cover area 20% with wet weight 100 g) with a productivity of 9.4 (g/m<sup>2</sup>/day). PRACTITIONER POINTS: Twenty percent duckweed coverage with freshwater mussels achieves optimal nutrient removal in RAS systems, improving water quality efficiently and growth better than other treatments. Combined biofilters (duckweed-mussel) and filtration units reduce operational costs while maintaining high fish survival rates in RAS systems. Integration of living biofilters provides sustainable water treatment without chemical additives, suitable for small-scale aquaculture operations.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70046"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70046","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing nutrient concentrations in fish culture systems over time can reduce water quality. However, the nutrient increase can be remediated by pairing organisms at lower trophic levels with a mechanical filtration system to improve nutrient removal efficiency and water quality for fish culture. This research uses the RAS system to determine the performance of integrating living organisms as biofilters in rearing juvenile rainbow trout (Oncorhynchus mykiss) for 56 days. Duckweed (Lemna minor) was added to replicate tanks at three treatment levels: T1 (100 g wet weight and 20% area coverage), T2 (200 g wet weight and 40% area coverage), and T3 (300g wet weight and 60% area coverage). The duckweed in each treatment tank was supplemented with 20 freshwater mussels (Anodonta cygnea) with an average body weight of 56 ± 1.0 g. Physical and chemical water quality parameters were measured in fish tanks and all ponds in the RAS system. Fish from the rearing tanks were weighed every two weeks. Duckweed biomass was measured weekly; the mussels were weighed at the beginning and end of the study, and the mussels were measured at the beginning and end of the rearing period. The fish was partially harvested every two weeks to maintain constant fish biomass. Using duckweed (L. minor) with different biomass weights and areal coverage, coupled with the freshwater mussels (A. cygnea) as living biofilters, had a significant effect (P < 0.05) on water quality parameters. Ammonium (NH4), nitrite (NO2), and nitrate (NO3) concentrations decreased throughout the study. During the study period, juvenile trout experienced growth with an SGR of 2.62-2.72%/gram with a survival rate of 100%. Partial harvesting during the rearing period positively impacted the average body weight of fish growth and duckweed biomass. The best duckweed growth performance was found in treatment T1 (cover area 20% with wet weight 100 g) with a productivity of 9.4 (g/m2/day). PRACTITIONER POINTS: Twenty percent duckweed coverage with freshwater mussels achieves optimal nutrient removal in RAS systems, improving water quality efficiently and growth better than other treatments. Combined biofilters (duckweed-mussel) and filtration units reduce operational costs while maintaining high fish survival rates in RAS systems. Integration of living biofilters provides sustainable water treatment without chemical additives, suitable for small-scale aquaculture operations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信