Deep Learning-based Brain Age Prediction Using MRI to Identify Fetuses with Cerebral Ventriculomegaly.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hyuk Jin Yun, Han-Jui Lee, Sungmin You, Joo Young Lee, Jerjes Aguirre-Chavez, Lana Vasung, Hyun Ju Lee, Tomo Tarui, Henry A Feldman, P Ellen Grant, Kiho Im
{"title":"Deep Learning-based Brain Age Prediction Using MRI to Identify Fetuses with Cerebral Ventriculomegaly.","authors":"Hyuk Jin Yun, Han-Jui Lee, Sungmin You, Joo Young Lee, Jerjes Aguirre-Chavez, Lana Vasung, Hyun Ju Lee, Tomo Tarui, Henry A Feldman, P Ellen Grant, Kiho Im","doi":"10.1148/ryai.240115","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Fetal ventriculomegaly (VM) and its severity and associated central nervous system (CNS) abnormalities are important indicators of high risk for impaired neurodevelopmental outcomes. Recently, a novel fetal brain age prediction method using a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices showed the potential to detect fetuses with VM. The purpose of this study examines the diagnostic performance of deep learning-based fetal brain age prediction model to distinguish fetuses with VM (<i>n</i> = 317) from typically developing fetuses (<i>n</i> = 183), the severity of VM, and the presence of associated CNS abnormalities. The predicted age difference (PAD) was measured by subtracting predicted brain age from gestational age in fetuses with VM and typically development. PAD and absolute value of PAD (AAD) were compared between VM and typically developing fetuses. In addition, PAD and AAD were compared between subgroups by VM severity and the presence of associated CNS abnormalities in VM. Fetuses with VM showed significantly larger AAD than typically developing (<i>P</i> < .001), and fetuses with severe VM showed larger AAD than those with moderate VM (<i>P</i> = .004). Fetuses with VM and associated CNS abnormalities had significantly lower PAD than fetuses with isolated VM (<i>P</i> = .005). These findings suggest that fetal brain age prediction using the 2D single-channel CNN method has the clinical ability to assist in identifying not only the enlargement of the ventricles but also the presence of associated CNS abnormalities. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240115"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Fetal ventriculomegaly (VM) and its severity and associated central nervous system (CNS) abnormalities are important indicators of high risk for impaired neurodevelopmental outcomes. Recently, a novel fetal brain age prediction method using a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices showed the potential to detect fetuses with VM. The purpose of this study examines the diagnostic performance of deep learning-based fetal brain age prediction model to distinguish fetuses with VM (n = 317) from typically developing fetuses (n = 183), the severity of VM, and the presence of associated CNS abnormalities. The predicted age difference (PAD) was measured by subtracting predicted brain age from gestational age in fetuses with VM and typically development. PAD and absolute value of PAD (AAD) were compared between VM and typically developing fetuses. In addition, PAD and AAD were compared between subgroups by VM severity and the presence of associated CNS abnormalities in VM. Fetuses with VM showed significantly larger AAD than typically developing (P < .001), and fetuses with severe VM showed larger AAD than those with moderate VM (P = .004). Fetuses with VM and associated CNS abnormalities had significantly lower PAD than fetuses with isolated VM (P = .005). These findings suggest that fetal brain age prediction using the 2D single-channel CNN method has the clinical ability to assist in identifying not only the enlargement of the ventricles but also the presence of associated CNS abnormalities. ©RSNA, 2025.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信