Orrin Devinsky, Jeff Coller, Rebecca Ahrens-Nicklas, X Shawn Liu, Nadav Ahituv, Beverly L Davidson, Kathie M Bishop, Yael Weiss, Ana Mingorance
{"title":"Gene therapies for neurogenetic disorders.","authors":"Orrin Devinsky, Jeff Coller, Rebecca Ahrens-Nicklas, X Shawn Liu, Nadav Ahituv, Beverly L Davidson, Kathie M Bishop, Yael Weiss, Ana Mingorance","doi":"10.1016/j.molmed.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic variants in over 1700 genes can cause neurogenetic disorders. Monogenetic diseases are ideal targets for genetic therapies; however, the blood-brain barrier (BBB), post-mitotic neurons, and inefficient delivery platforms make gene therapies for neurogenetic diseases challenging. Following nusinersen's 2016 approval, the development of gene therapies for neurogenetic disorders has advanced rapidly, with new delivery vehicles [e.g., BBB-crossing capsids, engineered viral-like proteins, lipid nanoparticles (LNPs)] and novel therapeutic strategies (e.g., regulatory elements, novel RNA therapeutics, tRNA therapies, epigenetic and gene editing). Patient-led disease foundations have accelerated treatment development by addressing trial readiness and supporting translational research. We review the current landscape and future directions in developing gene therapies for neurogenetic disorders.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmed.2025.01.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenic variants in over 1700 genes can cause neurogenetic disorders. Monogenetic diseases are ideal targets for genetic therapies; however, the blood-brain barrier (BBB), post-mitotic neurons, and inefficient delivery platforms make gene therapies for neurogenetic diseases challenging. Following nusinersen's 2016 approval, the development of gene therapies for neurogenetic disorders has advanced rapidly, with new delivery vehicles [e.g., BBB-crossing capsids, engineered viral-like proteins, lipid nanoparticles (LNPs)] and novel therapeutic strategies (e.g., regulatory elements, novel RNA therapeutics, tRNA therapies, epigenetic and gene editing). Patient-led disease foundations have accelerated treatment development by addressing trial readiness and supporting translational research. We review the current landscape and future directions in developing gene therapies for neurogenetic disorders.
期刊介绍:
Trends in Molecular Medicine (TMM) aims to offer concise and contextualized perspectives on the latest research advancing biomedical science toward better diagnosis, treatment, and prevention of human diseases. It focuses on research at the intersection of basic biology and clinical research, covering new concepts in human biology and pathology with clear implications for diagnostics and therapy. TMM reviews bridge the gap between bench and bedside, discussing research from preclinical studies to patient-enrolled trials. The major themes include disease mechanisms, tools and technologies, diagnostics, and therapeutics, with a preference for articles relevant to multiple themes. TMM serves as a platform for discussion, pushing traditional boundaries and fostering collaboration between scientists and clinicians. The journal seeks to publish provocative and authoritative articles that are also accessible to a broad audience, inspiring new directions in molecular medicine to enhance human health.