Matthew J Borrelli, Bart Kolendowski, Gabriel E DiMattia, Trevor G Shepherd
{"title":"Spatiotemporal analysis of ratiometric biosensors in live multicellular spheroids using SPoRTS.","authors":"Matthew J Borrelli, Bart Kolendowski, Gabriel E DiMattia, Trevor G Shepherd","doi":"10.1016/j.crmeth.2025.100987","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we describe SPoRTS, an open-source workflow for high-throughput spatiotemporal image analysis of fluorescence-based ratiometric biosensors in living spheroids. To achieve this, we have implemented a fully automated algorithm for the acquisition of line intensity profile data, ultimately enabling semi-quantitative measurement of biosensor activity as a function of distance from the center of the spheroid. We demonstrate the functionality of SPoRTS via spatial analysis of live spheroids expressing a ratiometric biosensor based on the fluorescent, ubiquitin-based cell-cycle indicator (FUCCI) system, which identifies mitotic cells. We compare this FUCCI-based SPoRTS analysis with spatially quantified immunostaining for proliferation markers, finding that the results are strongly correlated.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100987"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.100987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we describe SPoRTS, an open-source workflow for high-throughput spatiotemporal image analysis of fluorescence-based ratiometric biosensors in living spheroids. To achieve this, we have implemented a fully automated algorithm for the acquisition of line intensity profile data, ultimately enabling semi-quantitative measurement of biosensor activity as a function of distance from the center of the spheroid. We demonstrate the functionality of SPoRTS via spatial analysis of live spheroids expressing a ratiometric biosensor based on the fluorescent, ubiquitin-based cell-cycle indicator (FUCCI) system, which identifies mitotic cells. We compare this FUCCI-based SPoRTS analysis with spatially quantified immunostaining for proliferation markers, finding that the results are strongly correlated.