A weighted predictive modeling method for estimating thresholds of meaningful within-individual change for patient-reported outcomes.

IF 3.3 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Chong-Ye Zhao, Min-Qian Yan, Xiao-Han Xu, Chun-Quan Ou
{"title":"A weighted predictive modeling method for estimating thresholds of meaningful within-individual change for patient-reported outcomes.","authors":"Chong-Ye Zhao, Min-Qian Yan, Xiao-Han Xu, Chun-Quan Ou","doi":"10.1007/s11136-025-03924-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Calculating the threshold for meaningful within-individual change (MWIC) is essential for interpreting patient-reported outcomes (PRO). However, traditional methods of determining MWIC threshold yield varying estimates and lack a standardized approach. We aim to propose a novel method for more accurate MWIC threshold estimation.</p><p><strong>Methods: </strong>We developed a weighted predictive modeling method. The weighting involved using the rank difference between PRO score change and the anchor of each individual. A Monte Carlo simulation was conducted to compare the performance of the new method and that of existing state-of-the-art methods. Simulation parameters included distributions of PRO score changes, sample sizes, improvement proportions, and correlation strengths. Statistical performance was assessed using relative bias (rbias), coefficient of variation (CV), and relative root mean squared error (rRMSE).</p><p><strong>Results: </strong>Distribution-based methods had the largest rbias and rRMSE among all methods. Existing anchor-based methods except for the Terluin 2022 method were biased when the correlation strength was weak or when the improvement proportion was not 50%. The Terluin 2022 method requires estimating an important reliability parameter, and this method had highest CV compared to other predictive modeling methods. The new weighted method demonstrated the smallest rRMSE across most simulation settings. It also maintained relatively high accuracy under weak correlation strength or imbalanced improvement proportion. Similar results were presented under normal or skewed distributions of PRO score changes.</p><p><strong>Conclusion: </strong>This novel method offers a simple and feasible alternative to existing predictive modeling methods for estimating MWIC threshold, which can facilitate the application of PRO.</p>","PeriodicalId":20748,"journal":{"name":"Quality of Life Research","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality of Life Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11136-025-03924-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Calculating the threshold for meaningful within-individual change (MWIC) is essential for interpreting patient-reported outcomes (PRO). However, traditional methods of determining MWIC threshold yield varying estimates and lack a standardized approach. We aim to propose a novel method for more accurate MWIC threshold estimation.

Methods: We developed a weighted predictive modeling method. The weighting involved using the rank difference between PRO score change and the anchor of each individual. A Monte Carlo simulation was conducted to compare the performance of the new method and that of existing state-of-the-art methods. Simulation parameters included distributions of PRO score changes, sample sizes, improvement proportions, and correlation strengths. Statistical performance was assessed using relative bias (rbias), coefficient of variation (CV), and relative root mean squared error (rRMSE).

Results: Distribution-based methods had the largest rbias and rRMSE among all methods. Existing anchor-based methods except for the Terluin 2022 method were biased when the correlation strength was weak or when the improvement proportion was not 50%. The Terluin 2022 method requires estimating an important reliability parameter, and this method had highest CV compared to other predictive modeling methods. The new weighted method demonstrated the smallest rRMSE across most simulation settings. It also maintained relatively high accuracy under weak correlation strength or imbalanced improvement proportion. Similar results were presented under normal or skewed distributions of PRO score changes.

Conclusion: This novel method offers a simple and feasible alternative to existing predictive modeling methods for estimating MWIC threshold, which can facilitate the application of PRO.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Quality of Life Research
Quality of Life Research 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.50
自引率
8.60%
发文量
224
审稿时长
3-8 weeks
期刊介绍: Quality of Life Research is an international, multidisciplinary journal devoted to the rapid communication of original research, theoretical articles and methodological reports related to the field of quality of life, in all the health sciences. The journal also offers editorials, literature, book and software reviews, correspondence and abstracts of conferences. Quality of life has become a prominent issue in biometry, philosophy, social science, clinical medicine, health services and outcomes research. The journal''s scope reflects the wide application of quality of life assessment and research in the biological and social sciences. All original work is subject to peer review for originality, scientific quality and relevance to a broad readership. This is an official journal of the International Society of Quality of Life Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信