{"title":"From duplication to fusion: Expanding Dayhoff's model of protein evolution.","authors":"Yusran Abdillah Muthahari, Lilian Magnus, Paola Laurino","doi":"10.1002/pro.70054","DOIUrl":null,"url":null,"abstract":"<p><p>Dayhoff's hypothesis suggests that complex proteins emerged from simpler peptides or domains, which duplicated and fused to create more complex proteins and novel functions. These processes expanded and diversified the protein repertoire within organisms. Extensive studies and reviews over the past two decades have highlighted the impact of gene duplication on protein evolution. However, the role of fusion in this evolutionary narrative remains less understood. This perspective seeks to address this gap by emphasizing the role of fusion in evolution. Fusion is critical in determining the evolutionary fate of duplicated protomers, either preserving their ancestral function or evolving entirely new functions. It complements mutations, insertions, and deletions as evolutionary steps to enhance protein evolvability by expanding the capacity of the protein to explore new structural and functional space.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70054"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dayhoff's hypothesis suggests that complex proteins emerged from simpler peptides or domains, which duplicated and fused to create more complex proteins and novel functions. These processes expanded and diversified the protein repertoire within organisms. Extensive studies and reviews over the past two decades have highlighted the impact of gene duplication on protein evolution. However, the role of fusion in this evolutionary narrative remains less understood. This perspective seeks to address this gap by emphasizing the role of fusion in evolution. Fusion is critical in determining the evolutionary fate of duplicated protomers, either preserving their ancestral function or evolving entirely new functions. It complements mutations, insertions, and deletions as evolutionary steps to enhance protein evolvability by expanding the capacity of the protein to explore new structural and functional space.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).