Mosquito mutations F290V and F331W expressed in acetylcholinesterase of the sand fly Phlebotomus papatasi (Scopoli): biochemical properties and inhibitor sensitivity.
Kevin B Temeyer, Fan Tong, Kristie G Schlechte, Qiao-Hong Chen, Paul R Carlier, Adalberto Á Pérez de León, Jeffrey R Bloomquist
{"title":"Mosquito mutations F290V and F331W expressed in acetylcholinesterase of the sand fly Phlebotomus papatasi (Scopoli): biochemical properties and inhibitor sensitivity.","authors":"Kevin B Temeyer, Fan Tong, Kristie G Schlechte, Qiao-Hong Chen, Paul R Carlier, Adalberto Á Pérez de León, Jeffrey R Bloomquist","doi":"10.1186/s13071-025-06691-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Old World sand fly, Phlebotomus papatasi (Scopoli), a vector of zoonotic cutaneous leishmaniasis, is usually controlled by insecticides, including anticholinesterases. Previous studies have revealed 85% amino acid sequence identity of recombinant P. papatasi acetylcholinesterase (rPpAChE1) to mosquito AChE. They identified synthetic carbamates that selectively inhibited rPpAChE1 and circumvented the G119S mutation responsible for high-level resistance to anticholinesterases. This study reports the construction, baculovirus expression, and biochemical properties of rPpAChE1 containing the F290V and F331W orthologous mutations from mosquitoes.</p><p><strong>Methods: </strong>Recombinant PpAChE1 enzymes with or without the F290V, F331W, and G119S orthologous mosquito mutations were expressed in Sf21cells utilizing the baculoviral system. Ellman assays determined changes in catalytic properties and inhibitor sensitivity resulting from wild type and mutant rPpAChE1 containing single or combinations of orthologous mosquito mutations.</p><p><strong>Results: </strong>Each of the orthologous mutations (F290V, F331W, and G119S) from mosquito AChE significantly reduced inhibition sensitivity to organophosphate or carbamate pesticides, and catalytic activity was lost when they were expressed in combination. Novel synthetic carbamates were identified that significantly inhibited the rPpAChEs expressing each of the single orthologous mosquito mutations.</p><p><strong>Conclusions: </strong>These novel carbamates could be developed as efficacious insecticides, with improved specificity and safety for use in sand fly or mosquito populations expressing the mutant AChEs.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"57"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06691-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Old World sand fly, Phlebotomus papatasi (Scopoli), a vector of zoonotic cutaneous leishmaniasis, is usually controlled by insecticides, including anticholinesterases. Previous studies have revealed 85% amino acid sequence identity of recombinant P. papatasi acetylcholinesterase (rPpAChE1) to mosquito AChE. They identified synthetic carbamates that selectively inhibited rPpAChE1 and circumvented the G119S mutation responsible for high-level resistance to anticholinesterases. This study reports the construction, baculovirus expression, and biochemical properties of rPpAChE1 containing the F290V and F331W orthologous mutations from mosquitoes.
Methods: Recombinant PpAChE1 enzymes with or without the F290V, F331W, and G119S orthologous mosquito mutations were expressed in Sf21cells utilizing the baculoviral system. Ellman assays determined changes in catalytic properties and inhibitor sensitivity resulting from wild type and mutant rPpAChE1 containing single or combinations of orthologous mosquito mutations.
Results: Each of the orthologous mutations (F290V, F331W, and G119S) from mosquito AChE significantly reduced inhibition sensitivity to organophosphate or carbamate pesticides, and catalytic activity was lost when they were expressed in combination. Novel synthetic carbamates were identified that significantly inhibited the rPpAChEs expressing each of the single orthologous mosquito mutations.
Conclusions: These novel carbamates could be developed as efficacious insecticides, with improved specificity and safety for use in sand fly or mosquito populations expressing the mutant AChEs.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.