Investigating the Impact of Turmeric on Neuroinflammation and Degenerative Changes in Repetitive Traumatic Brain Injuries: Insights from Murine Model.

Q3 Medicine
Korean Journal of Neurotrauma Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.13004/kjnt.2025.21.e6
Andre Marolop Pangihutan Siahaan, Alvin Ivander, Nicholas Rizki Banta Ginting, Muhammad Alfath Bagus Pratama, Christine Silalahi, Tri Mulyani Aries, Michael Christian Martua Purba
{"title":"Investigating the Impact of Turmeric on Neuroinflammation and Degenerative Changes in Repetitive Traumatic Brain Injuries: Insights from Murine Model.","authors":"Andre Marolop Pangihutan Siahaan, Alvin Ivander, Nicholas Rizki Banta Ginting, Muhammad Alfath Bagus Pratama, Christine Silalahi, Tri Mulyani Aries, Michael Christian Martua Purba","doi":"10.13004/kjnt.2025.21.e6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Preclinical and clinical studies investigating the effects of curcumin on TBI indicate that curcumin can modulate essential signaling pathways and molecules that mediate neuroinflammation in TBI. This study aimed to explore the effects of turmeric on neuroinflammation and neurodegenerative disorder following repetitive traumatic brain injuries (rTBIs) in a rat model.</p><p><strong>Methods: </strong>Sixty male <i>Rattus norvegicus</i> were housed in a controlled environment. A modified Marmarou weight drop model was used. Turmeric extract was administered once daily in the morning. The avidin-biotin-peroxidase complex technique was used to evaluate the expression of all markers. Following incubation with normal rabbit serum, the slides were subsequently incubated with monoclonal antibodies targeting tau protein (AT-8), TAR DNA-binding protein 43 (TDP-43), glial fibrillary acidic protein (GFAP), and tumor necrosis factor (TNF)-α.</p><p><strong>Results: </strong>rTBI significantly increased the levels of inflammatory markers, such as TNF-α and GFAP. A substantial decrease of TNF-α expression was observed in the treatment group. A distinct trend was observed for GFAP expression, which was markedly decreased after the rest period compared to that in the trauma group. Phosphorylated tau expression decreased in both the treatment and pretreatment groups relative to that in the trauma and rest groups. TDP-43 expression was also significantly decreased in the treatment and pretreatment groups.</p><p><strong>Conclusion: </strong>In conclusion, Turmeric demonstrates significant potential as a neuroprotective and anti-inflammatory agent in rTBI, especially when used as a preventive measure. Our findings challenge the significance of rest in concussion management.</p>","PeriodicalId":36879,"journal":{"name":"Korean Journal of Neurotrauma","volume":"21 1","pages":"18-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Neurotrauma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13004/kjnt.2025.21.e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Preclinical and clinical studies investigating the effects of curcumin on TBI indicate that curcumin can modulate essential signaling pathways and molecules that mediate neuroinflammation in TBI. This study aimed to explore the effects of turmeric on neuroinflammation and neurodegenerative disorder following repetitive traumatic brain injuries (rTBIs) in a rat model.

Methods: Sixty male Rattus norvegicus were housed in a controlled environment. A modified Marmarou weight drop model was used. Turmeric extract was administered once daily in the morning. The avidin-biotin-peroxidase complex technique was used to evaluate the expression of all markers. Following incubation with normal rabbit serum, the slides were subsequently incubated with monoclonal antibodies targeting tau protein (AT-8), TAR DNA-binding protein 43 (TDP-43), glial fibrillary acidic protein (GFAP), and tumor necrosis factor (TNF)-α.

Results: rTBI significantly increased the levels of inflammatory markers, such as TNF-α and GFAP. A substantial decrease of TNF-α expression was observed in the treatment group. A distinct trend was observed for GFAP expression, which was markedly decreased after the rest period compared to that in the trauma group. Phosphorylated tau expression decreased in both the treatment and pretreatment groups relative to that in the trauma and rest groups. TDP-43 expression was also significantly decreased in the treatment and pretreatment groups.

Conclusion: In conclusion, Turmeric demonstrates significant potential as a neuroprotective and anti-inflammatory agent in rTBI, especially when used as a preventive measure. Our findings challenge the significance of rest in concussion management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
41
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信