Material surface conjugated with fibroblast growth factor-2 for pluripotent stem cell culture and differentiation.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2025-01-02 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbaf003
Tzu-Cheng Sung, Zhi-Xian Pan, Ting Wang, Hui-Yu Lin, Chia-Lun Chang, Ling-Chun Hung, Suresh Kumar Subbiah, Remya Rajan Renuka, Shih-Jie Chou, Shih-Hwa Chiou, Idaszek Joanna, Henry Hsin-Chung Lee, Gwo-Jang Wu, Akon Higuchi
{"title":"Material surface conjugated with fibroblast growth factor-2 for pluripotent stem cell culture and differentiation.","authors":"Tzu-Cheng Sung, Zhi-Xian Pan, Ting Wang, Hui-Yu Lin, Chia-Lun Chang, Ling-Chun Hung, Suresh Kumar Subbiah, Remya Rajan Renuka, Shih-Jie Chou, Shih-Hwa Chiou, Idaszek Joanna, Henry Hsin-Chung Lee, Gwo-Jang Wu, Akon Higuchi","doi":"10.1093/rb/rbaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast growth factor-2 (FGF-2) is a critical molecule for sustaining the pluripotency of human pluripotent stem (PS) cells. However, FGF-2 is extremely unstable and cannot be stored long periods at room temperature. Therefore, the following FGF-2-conjugated cell culture materials were developed to stabilize FGF-2: FGF-2-conjugated polyvinyl alcohol (PVAI-C-FGF) hydrogels and FGF-2-conjugated carboxymethyl cellulose-coated (CMC-C-FGF) dishes. Human induced pluripotent stem (iPS) cells were proliferated on recombinant vitronectin (rVN)-coated PVAI-C-FGF hydrogels and CMC-C-FGF dishes in medium without FGF-2. Human iPS cells could not be cultivated on rVN-coated PVAI-C-FGF hydrogels for more than two passages but could proliferate on rVN-coated CMC-C-FGF dishes. These results indicated that the amount of immobilized FGF-2 and the base cell materials are important, including the amount of immobilized rVN and the conformation of FGF-2 on the surfaces. When human iPS cells were proliferated on rVN-coated CMC-C-FGF surfaces in medium containing no FGF-2 for 10 passages, their pluripotency and potential to differentiate into cells originating from three germ layers were maintained <i>in vivo</i> and <i>in vitro</i>. Furthermore, the cells could extensively differentiate into cardiomyocytes, which can be used for cardiac infarction treatment in future and retinal pigment epithelium for retinal pigmentosa treatment in future. The FGF-2-immobilized surface could enable human PS cell culture in medium that does not need to contain unstable FGF-2. The amount of FGF-2 immobilization on the rVN-coated CMC-C-5FGF and CMC-C-20FGF dishes was reduced to 93.6 and 52.2 times, respectively, which is less than the conventional amount of FGF-2 used in culture medium for one passage (6 days) of human iPS cell culture. This reduction resulted from the stabilization of unstable FGF-2 by the immobilization of FGF-2, which was achieved by utilizing optimal base materials (CMC), coating materials (rVN) and long-joint segment (PEG4-SPDP) design.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf003"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast growth factor-2 (FGF-2) is a critical molecule for sustaining the pluripotency of human pluripotent stem (PS) cells. However, FGF-2 is extremely unstable and cannot be stored long periods at room temperature. Therefore, the following FGF-2-conjugated cell culture materials were developed to stabilize FGF-2: FGF-2-conjugated polyvinyl alcohol (PVAI-C-FGF) hydrogels and FGF-2-conjugated carboxymethyl cellulose-coated (CMC-C-FGF) dishes. Human induced pluripotent stem (iPS) cells were proliferated on recombinant vitronectin (rVN)-coated PVAI-C-FGF hydrogels and CMC-C-FGF dishes in medium without FGF-2. Human iPS cells could not be cultivated on rVN-coated PVAI-C-FGF hydrogels for more than two passages but could proliferate on rVN-coated CMC-C-FGF dishes. These results indicated that the amount of immobilized FGF-2 and the base cell materials are important, including the amount of immobilized rVN and the conformation of FGF-2 on the surfaces. When human iPS cells were proliferated on rVN-coated CMC-C-FGF surfaces in medium containing no FGF-2 for 10 passages, their pluripotency and potential to differentiate into cells originating from three germ layers were maintained in vivo and in vitro. Furthermore, the cells could extensively differentiate into cardiomyocytes, which can be used for cardiac infarction treatment in future and retinal pigment epithelium for retinal pigmentosa treatment in future. The FGF-2-immobilized surface could enable human PS cell culture in medium that does not need to contain unstable FGF-2. The amount of FGF-2 immobilization on the rVN-coated CMC-C-5FGF and CMC-C-20FGF dishes was reduced to 93.6 and 52.2 times, respectively, which is less than the conventional amount of FGF-2 used in culture medium for one passage (6 days) of human iPS cell culture. This reduction resulted from the stabilization of unstable FGF-2 by the immobilization of FGF-2, which was achieved by utilizing optimal base materials (CMC), coating materials (rVN) and long-joint segment (PEG4-SPDP) design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信