Linking the multiple-demand cognitive control system to human electrophysiological activity

IF 2 3区 心理学 Q3 BEHAVIORAL SCIENCES
Runhao Lu
{"title":"Linking the multiple-demand cognitive control system to human electrophysiological activity","authors":"Runhao Lu","doi":"10.1016/j.neuropsychologia.2025.109096","DOIUrl":null,"url":null,"abstract":"<div><div>The frontoparietal multiple-demand (MD) network serves as a core system for domain-general cognitive control, with robust activation with increased demand across diverse tasks. While fMRI studies have characterised the MD network's role in cognitive demand, linking these findings to electrophysiological activity remains a critical challenge. This article discusses the potential of oscillatory and aperiodic neural activity to bridge this gap. Although recent meta-analyses highlight mid-frontal theta power as a robust marker of task demand, its localised spatial distribution, limited cross-task generalisability, and potential confounds from aperiodic components limit its ability to fully represent the MD network. In contrast, aperiodic activity, particularly broadband power, has emerged as a strong candidate for indexing task demand due to its robust decoding performance and cross-task generalisability in response to diverse task demands, and spatial overlap with MD regions. Aperiodic activity may reflect fundamental neural properties, such as spiking rates and excitation/inhibition (E/I) balance, and is scale-free and exists across modalities, positioning it as a promising mechanism underpinning domain-general cognitive control that links to the MD network. Meanwhile, multiplexed low-frequency oscillations (e.g., delta and theta) may implement inter-regional synchronisation within the MD network, enabling large-scale coordination between MD subregions that supports cognitive control. Together, this article proposes a hypothetical framework linking the MD network to electrophysiological responses: Aperiodic broadband power, potentially reflecting population-level spiking activity, may support activation within MD regions, while multiplexed low-frequency oscillatory synchronisations may mediate inter-regional connectivity between MD regions.</div></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"210 ","pages":"Article 109096"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393225000314","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The frontoparietal multiple-demand (MD) network serves as a core system for domain-general cognitive control, with robust activation with increased demand across diverse tasks. While fMRI studies have characterised the MD network's role in cognitive demand, linking these findings to electrophysiological activity remains a critical challenge. This article discusses the potential of oscillatory and aperiodic neural activity to bridge this gap. Although recent meta-analyses highlight mid-frontal theta power as a robust marker of task demand, its localised spatial distribution, limited cross-task generalisability, and potential confounds from aperiodic components limit its ability to fully represent the MD network. In contrast, aperiodic activity, particularly broadband power, has emerged as a strong candidate for indexing task demand due to its robust decoding performance and cross-task generalisability in response to diverse task demands, and spatial overlap with MD regions. Aperiodic activity may reflect fundamental neural properties, such as spiking rates and excitation/inhibition (E/I) balance, and is scale-free and exists across modalities, positioning it as a promising mechanism underpinning domain-general cognitive control that links to the MD network. Meanwhile, multiplexed low-frequency oscillations (e.g., delta and theta) may implement inter-regional synchronisation within the MD network, enabling large-scale coordination between MD subregions that supports cognitive control. Together, this article proposes a hypothetical framework linking the MD network to electrophysiological responses: Aperiodic broadband power, potentially reflecting population-level spiking activity, may support activation within MD regions, while multiplexed low-frequency oscillatory synchronisations may mediate inter-regional connectivity between MD regions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropsychologia
Neuropsychologia 医学-行为科学
CiteScore
5.10
自引率
3.80%
发文量
228
审稿时长
4 months
期刊介绍: Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信