Qingguo Li, Yiwei Xiao, Lingyu Han, Wenqin Luo, Weixing Dai, Hongsheng Fang, Renjie Wang, Ye Xu, Sanjun Cai, Ajay Goel, Fan Bai, Guoxiang Cai
{"title":"Microbiome dysbiosis, neutrophil recruitment and mesenchymal transition of mesothelial cells promotes peritoneal metastasis of colorectal cancer.","authors":"Qingguo Li, Yiwei Xiao, Lingyu Han, Wenqin Luo, Weixing Dai, Hongsheng Fang, Renjie Wang, Ye Xu, Sanjun Cai, Ajay Goel, Fan Bai, Guoxiang Cai","doi":"10.1038/s43018-025-00910-9","DOIUrl":null,"url":null,"abstract":"<p><p>Peritoneal metastasis (PM) is common in colorectal cancer (CRC), yet its underlying mechanisms are poorly understood. Here, we explored the transcriptional profile of CRC, PM and adjacent tissues revealing key players that facilitate PM. Single-cell analysis of 48 matched samples from 12 patients revealed that remodeling of malignant cells and the tumor microenvironment promotes CRC progression and metastasis. Multiplexed imaging confirmed depletion in PM by enrichment in CRC tissues of neutrophils associated with mucosal immunity disruption, intestinal microbiota dysbiosis and mesenchymal transition of both cancerous and mesothelial cells. Functional analyses in cell lines, organoids and in vivo models demonstrated that dysbiosis promoted inflammation and protumor neutrophil recruitment, while coupled mesenchymal transition of malignant and mesothelial cells disrupted the stromal structure and increased cancer cell invasiveness. Our findings suggest that targeting mesothelial cells and tumor microenvironment remodeling may offer therapeutic strategies for CRC-PM.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00910-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peritoneal metastasis (PM) is common in colorectal cancer (CRC), yet its underlying mechanisms are poorly understood. Here, we explored the transcriptional profile of CRC, PM and adjacent tissues revealing key players that facilitate PM. Single-cell analysis of 48 matched samples from 12 patients revealed that remodeling of malignant cells and the tumor microenvironment promotes CRC progression and metastasis. Multiplexed imaging confirmed depletion in PM by enrichment in CRC tissues of neutrophils associated with mucosal immunity disruption, intestinal microbiota dysbiosis and mesenchymal transition of both cancerous and mesothelial cells. Functional analyses in cell lines, organoids and in vivo models demonstrated that dysbiosis promoted inflammation and protumor neutrophil recruitment, while coupled mesenchymal transition of malignant and mesothelial cells disrupted the stromal structure and increased cancer cell invasiveness. Our findings suggest that targeting mesothelial cells and tumor microenvironment remodeling may offer therapeutic strategies for CRC-PM.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.