Exploring Ketones in Chrysopogon zizanioides: A Computational Molecular Dynamic Approach to c-Met Modulation.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Somayeh Sabaghan, Rashi Srivastava, Pardeep Yadav, Muskan Kumari, Renuka Soni, Shanuja Beri, Saurabh Kumar Jha
{"title":"Exploring Ketones in Chrysopogon zizanioides: A Computational Molecular Dynamic Approach to c-Met Modulation.","authors":"Somayeh Sabaghan, Rashi Srivastava, Pardeep Yadav, Muskan Kumari, Renuka Soni, Shanuja Beri, Saurabh Kumar Jha","doi":"10.1007/s12033-025-01377-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma demands the designing of potential drugs as there is no specific treatment available. In this study, we employed computational screening techniques to identify potential modulators of the c-Met receptor from a library of 273 Chrysopogon zizanioides derived compounds which can pass blood brain barrier (BBB) due to their low molecular weight and BBB permeability. Through rigorous molecular docking simulations utilizing Auto Dock Vina plugin integrated with Chimera software, Ketone (C<sub>29</sub>H<sub>56</sub>O) (IMPHY012701) emerged as a standout candidate, exhibiting a lower binding energy compared to the reference molecule, AMG 337 which was used as a control compound. The optimal orientation of Ketone (C<sub>29</sub>H<sub>56</sub>O) (IMPHY012701) within the c-Met receptor's active site was elucidated, indicating favourable molecular interactions conducive to stable binding. Ketone (C<sub>29</sub>H<sub>56</sub>O) (IMPHY012701) shows equilibrium state during 50 ns simulation with least root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values. Notably, Ketone (C<sub>29</sub>H<sub>56</sub>O) (IMPHY012701) demonstrated superior binding affinity relative to the control compound, underscoring its potential as a lead for further investigation. This study underscores the utility of computational approaches in drug discovery from natural sources and highlights Ketone (C<sub>29</sub>H<sub>56</sub>O) (IMPHY012701) as a promising candidate for the modulation of c-Met-mediated signalling pathways, warranting further experimental validation and exploration of its pharmacological properties.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01377-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma demands the designing of potential drugs as there is no specific treatment available. In this study, we employed computational screening techniques to identify potential modulators of the c-Met receptor from a library of 273 Chrysopogon zizanioides derived compounds which can pass blood brain barrier (BBB) due to their low molecular weight and BBB permeability. Through rigorous molecular docking simulations utilizing Auto Dock Vina plugin integrated with Chimera software, Ketone (C29H56O) (IMPHY012701) emerged as a standout candidate, exhibiting a lower binding energy compared to the reference molecule, AMG 337 which was used as a control compound. The optimal orientation of Ketone (C29H56O) (IMPHY012701) within the c-Met receptor's active site was elucidated, indicating favourable molecular interactions conducive to stable binding. Ketone (C29H56O) (IMPHY012701) shows equilibrium state during 50 ns simulation with least root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values. Notably, Ketone (C29H56O) (IMPHY012701) demonstrated superior binding affinity relative to the control compound, underscoring its potential as a lead for further investigation. This study underscores the utility of computational approaches in drug discovery from natural sources and highlights Ketone (C29H56O) (IMPHY012701) as a promising candidate for the modulation of c-Met-mediated signalling pathways, warranting further experimental validation and exploration of its pharmacological properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信