Clonal expression and structural analysis of polylactic acid-degrading enzyme S8SP from Bacillus safensis.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yujun Wang, Yuanyi Zhang, Chunwang Li, Siqi Meng, Dandan Wang, Lehui Zhao, Zhanyong Wang
{"title":"Clonal expression and structural analysis of polylactic acid-degrading enzyme S8SP from Bacillus safensis.","authors":"Yujun Wang, Yuanyi Zhang, Chunwang Li, Siqi Meng, Dandan Wang, Lehui Zhao, Zhanyong Wang","doi":"10.1093/lambio/ovaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactic acid (PLA) is one of the most popular biodegradable plastics favored over traditional plastics. However, it is more difficult to degrade than other biodegradable plastics probably due to the low species and number of PLA-degrading microorganisms degrading enzymes in the environment. Therefore, identifying PLA-degrading microorganisms and enzymes is of great significance for the popularization and application of PLA. This study identified a PLA-degrading enzyme, S8 serine peptidase (S8SP), from Bacillus safensis, and the heterologous expression of S8SP was conducted in Escherichia coli. PLA degradation ability of S8SP was investigated using scanning electron microscopy and water contact angle. The surface of S8SP-degraded PLA films showed obvious cracks and pits and exhibited improved hydrophilicity. The molecular weight of S8SP was about 42 kDa, and its optimum temperature and pH were 40°C and 8.0, respectively. S8SP could maintain high stability in the temperature range of 30°C-40°C and pH range of 7.0-9.0. Sodium ions (Na+), potassium ions (K+), Triton X-100, and Tween-80 promoted the enzyme activity of S8SP. S8SP had a high similarity degree to S8 serine peptidase from the genus Bacillus, and had the classical hydrolase-catalyzed triplet structure.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactic acid (PLA) is one of the most popular biodegradable plastics favored over traditional plastics. However, it is more difficult to degrade than other biodegradable plastics probably due to the low species and number of PLA-degrading microorganisms degrading enzymes in the environment. Therefore, identifying PLA-degrading microorganisms and enzymes is of great significance for the popularization and application of PLA. This study identified a PLA-degrading enzyme, S8 serine peptidase (S8SP), from Bacillus safensis, and the heterologous expression of S8SP was conducted in Escherichia coli. PLA degradation ability of S8SP was investigated using scanning electron microscopy and water contact angle. The surface of S8SP-degraded PLA films showed obvious cracks and pits and exhibited improved hydrophilicity. The molecular weight of S8SP was about 42 kDa, and its optimum temperature and pH were 40°C and 8.0, respectively. S8SP could maintain high stability in the temperature range of 30°C-40°C and pH range of 7.0-9.0. Sodium ions (Na+), potassium ions (K+), Triton X-100, and Tween-80 promoted the enzyme activity of S8SP. S8SP had a high similarity degree to S8 serine peptidase from the genus Bacillus, and had the classical hydrolase-catalyzed triplet structure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信