Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion.
IF 10.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zehui He, Zhenda Liu, Yongtai Zhang, Teng Guo, Nianping Feng
{"title":"Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion.","authors":"Zehui He, Zhenda Liu, Yongtai Zhang, Teng Guo, Nianping Feng","doi":"10.1186/s12951-025-03234-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclodextrin metal-organic frameworks (CD-MOF) as delivery carriers have gained great attention in the biomedical field. However, limited by challenges of moisture-sensitive nature, the design and application of CD-MOF-based hair follicle delivery for androgenic alopecia (AGA) has rarely been explored. We developed the metal-organic frameworks as hair follicle-targeted delivery system (SA-MOF), stearic acid (SA) was used to modify metal-organic frameworks to form a protective hydrophobic layer on the surface and provide the additional hair growth-promoting effect. Cardamonin (CAR), a newly discovered biosafety natural product, was encapsulated in SA-MOF (CAR@SA-MOF) to promote the therapeutic efficacy on AGA. CD-MOF surface-engineered nanoparticles modified by SA avoided the rapid hydration and disintegration of CD-MOF in water, which improved the drug release and follicular deposition of drug. Assisted by the delivery of SA-modified CD-MOF carriers, the drug significantly promoted cell proliferation and migration, achieving the promoting effect on hair follicle differentiation and hair regeneration in testosterone-challenged C57BL/6 mice. Simultaneously, SA modification provided additional promoting effects on human dermal papilla cell proliferation, regulating effect on keratinocyte growth factor, and activating effect of key signaling pathways. The surface engineering design of CD-MOF hair follicle drug delivery based on SA modification exhibits significant potential for the treatment of hair follicle and sebaceous gland-related diseases.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"118"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03234-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclodextrin metal-organic frameworks (CD-MOF) as delivery carriers have gained great attention in the biomedical field. However, limited by challenges of moisture-sensitive nature, the design and application of CD-MOF-based hair follicle delivery for androgenic alopecia (AGA) has rarely been explored. We developed the metal-organic frameworks as hair follicle-targeted delivery system (SA-MOF), stearic acid (SA) was used to modify metal-organic frameworks to form a protective hydrophobic layer on the surface and provide the additional hair growth-promoting effect. Cardamonin (CAR), a newly discovered biosafety natural product, was encapsulated in SA-MOF (CAR@SA-MOF) to promote the therapeutic efficacy on AGA. CD-MOF surface-engineered nanoparticles modified by SA avoided the rapid hydration and disintegration of CD-MOF in water, which improved the drug release and follicular deposition of drug. Assisted by the delivery of SA-modified CD-MOF carriers, the drug significantly promoted cell proliferation and migration, achieving the promoting effect on hair follicle differentiation and hair regeneration in testosterone-challenged C57BL/6 mice. Simultaneously, SA modification provided additional promoting effects on human dermal papilla cell proliferation, regulating effect on keratinocyte growth factor, and activating effect of key signaling pathways. The surface engineering design of CD-MOF hair follicle drug delivery based on SA modification exhibits significant potential for the treatment of hair follicle and sebaceous gland-related diseases.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.