Infrared absorbers inspired by nature.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-19 DOI:10.1098/rsif.2024.0284
Sébastien R Mouchet
{"title":"Infrared absorbers inspired by nature.","authors":"Sébastien R Mouchet","doi":"10.1098/rsif.2024.0284","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient energy harvesting, conversion and recycling technologies are crucial for addressing the challenges faced by modern societies and the global economy. The potential of harnessing mid-infrared (mid-IR) thermal radiation as a pervasive and readily available energy source has so far not been fully exploited, particularly through bioinspiration. In this article, by reviewing existing photon-based strategies and the efficiency of natural systems in harnessing light and thermal radiation, I highlight the promising role of bioinspiration in enhancing energy capture, conversion and recycling. Natural photonic structures found in various organisms, including insects, birds and plants, exhibit sophisticated optical properties that can be leveraged for energy-efficient applications. These developments pave the way for future research and innovation in bioinspired energy solutions. Ultimately, they contribute to the pursuit of a sustainable and environmentally conscious future by harnessing the beauty of nature's designs to meet humankind's energy needs.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240284"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0284","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy harvesting, conversion and recycling technologies are crucial for addressing the challenges faced by modern societies and the global economy. The potential of harnessing mid-infrared (mid-IR) thermal radiation as a pervasive and readily available energy source has so far not been fully exploited, particularly through bioinspiration. In this article, by reviewing existing photon-based strategies and the efficiency of natural systems in harnessing light and thermal radiation, I highlight the promising role of bioinspiration in enhancing energy capture, conversion and recycling. Natural photonic structures found in various organisms, including insects, birds and plants, exhibit sophisticated optical properties that can be leveraged for energy-efficient applications. These developments pave the way for future research and innovation in bioinspired energy solutions. Ultimately, they contribute to the pursuit of a sustainable and environmentally conscious future by harnessing the beauty of nature's designs to meet humankind's energy needs.

红外线吸收器的灵感来自大自然。
高效的能源收集、转换和回收技术对于解决现代社会和全球经济面临的挑战至关重要。到目前为止,利用中红外热辐射作为一种普遍和容易获得的能源的潜力尚未得到充分利用,特别是通过生物启发。在本文中,通过回顾现有的基于光子的策略和自然系统在利用光和热辐射方面的效率,我强调了生物灵感在增强能量捕获,转换和回收方面的有希望的作用。在包括昆虫、鸟类和植物在内的各种生物中发现的自然光子结构表现出复杂的光学特性,可以用于节能应用。这些发展为未来生物能源解决方案的研究和创新铺平了道路。最终,它们通过利用大自然设计之美来满足人类的能源需求,为追求可持续发展和具有环保意识的未来做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信