{"title":"Competition effects regulating the composition of the microRNA pool.","authors":"Sofia B Raak, Jonathan G Hanley, Cian O'Donnell","doi":"10.1098/rsif.2024.0870","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAS (miRNAs) are short non-coding RNAs that can repress mRNA translation to regulate protein synthesis. During their maturation, multiple types of pre-miRNAs compete for a shared pool of the enzyme Dicer. It is unknown how this competition for a shared resource influences the relative expression of mature miRNAs. We study this process in a computational model of pre-miRNA maturation, fitted to <i>in vitro Drosophila</i> S2 cell data. We find that those pre-miRNAs that efficiently interact with Dicer outcompete other pre-miRNAs, when Dicer is scarce. To test our model predictions, we re-analysed previously published <i>ex vivo</i> mouse striatum data with reduced <i>Dicer1</i> expression. We calculated a proxy measure for pre-miRNA affinity to TRBP (a protein that loads pre-miRNAs to Dicer). This measures well-predicted mature miRNA levels in the data, validating our assumptions. We used this as a basis to test the the model's predictions through further analysis of the data. We found that pre-miRNAs with strong TRBP association are over-represented in competition conditions, consistent with the modelling. Finally using further simulations, we discovered that pre-miRNAs with low maturation rates can affect the mature miRNA pool via competition among pre-miRNAs. Overall, this work presents evidence of pre-miRNA competition regulating the composition of mature miRNAs.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240870"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0870","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAS (miRNAs) are short non-coding RNAs that can repress mRNA translation to regulate protein synthesis. During their maturation, multiple types of pre-miRNAs compete for a shared pool of the enzyme Dicer. It is unknown how this competition for a shared resource influences the relative expression of mature miRNAs. We study this process in a computational model of pre-miRNA maturation, fitted to in vitro Drosophila S2 cell data. We find that those pre-miRNAs that efficiently interact with Dicer outcompete other pre-miRNAs, when Dicer is scarce. To test our model predictions, we re-analysed previously published ex vivo mouse striatum data with reduced Dicer1 expression. We calculated a proxy measure for pre-miRNA affinity to TRBP (a protein that loads pre-miRNAs to Dicer). This measures well-predicted mature miRNA levels in the data, validating our assumptions. We used this as a basis to test the the model's predictions through further analysis of the data. We found that pre-miRNAs with strong TRBP association are over-represented in competition conditions, consistent with the modelling. Finally using further simulations, we discovered that pre-miRNAs with low maturation rates can affect the mature miRNA pool via competition among pre-miRNAs. Overall, this work presents evidence of pre-miRNA competition regulating the composition of mature miRNAs.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.