{"title":"Injectable ADM temperature-sensitive hydrogel loaded with bFGF in diabetic rat wound healing study.","authors":"Haojiao Chen, Jianping Sun, Wenyang Liu","doi":"10.1177/08853282251321943","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. <b>Methods:</b> The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. <b>Results:</b> The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. <b>Conclusions:</b> Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1156-1164"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251321943","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. Methods: The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. Results: The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. Conclusions: Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.