Computational insights into DC-SIGN's enhanced recognition of mannotriose CPS units via Ca2+ ion cross-talk.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Glycoconjugate Journal Pub Date : 2025-04-01 Epub Date: 2025-02-19 DOI:10.1007/s10719-025-10179-w
Hemchandra Deka, Arabinda Ghosh, Debabrat Baishya
{"title":"Computational insights into DC-SIGN's enhanced recognition of mannotriose CPS units via Ca<sup>2+</sup> ion cross-talk.","authors":"Hemchandra Deka, Arabinda Ghosh, Debabrat Baishya","doi":"10.1007/s10719-025-10179-w","DOIUrl":null,"url":null,"abstract":"<p><p>The Carbohydrate Recognition Domain (CRD) of immune system's c-type lectin receptors (CLRs) preferentially interacts with the Capsular Polysaccharides (CPS) units. Implicit Ca<sup>2+</sup> ions are crucial to CRD function. Increment of the ionic concentration explicitly affects the CPS recognition by CRD many-fold. DC-SIGN is one such CLR that acts for the differential recognition of the microbial CPS. The CPS mannotriose had the lowest binding energy (ΔG -4.7 kcal/mol) and the maximum affinity for DC-SIGN with implicit Ca<sup>2+</sup> ion. In the present investigation the ligand affinity increases with the rise of Ca<sup>2+</sup> concentration up to 1.5 M. Again, within the CRD the residues viz; Glutamate (347), Proline (348), and Asparagine (349) (EPN) were reported previously as essential for CPS unit coordination. Our analysis demonstrated that besides the EPN residues, CPS unit interacts with the neighboring Asparagine (350), Glutamate (354) and Asparagine (355) residues. Thus, these residues were replaced one at a time with Alanine (a charge neutral residue) to test their effect on the contact event. The CRD loses its affinity for recognition on the N350A, E354A, and D355A substitutions. Thus, this heterogeneity of CRD recognition towards Carbohydrate provides fresh information about the immune system's theragnostic function. This new understanding of Ca<sup>2+</sup>-induced recognition may help design new theragnostic applications that boost our immune defenses against pathogenic evasion.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"61-76"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10179-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Carbohydrate Recognition Domain (CRD) of immune system's c-type lectin receptors (CLRs) preferentially interacts with the Capsular Polysaccharides (CPS) units. Implicit Ca2+ ions are crucial to CRD function. Increment of the ionic concentration explicitly affects the CPS recognition by CRD many-fold. DC-SIGN is one such CLR that acts for the differential recognition of the microbial CPS. The CPS mannotriose had the lowest binding energy (ΔG -4.7 kcal/mol) and the maximum affinity for DC-SIGN with implicit Ca2+ ion. In the present investigation the ligand affinity increases with the rise of Ca2+ concentration up to 1.5 M. Again, within the CRD the residues viz; Glutamate (347), Proline (348), and Asparagine (349) (EPN) were reported previously as essential for CPS unit coordination. Our analysis demonstrated that besides the EPN residues, CPS unit interacts with the neighboring Asparagine (350), Glutamate (354) and Asparagine (355) residues. Thus, these residues were replaced one at a time with Alanine (a charge neutral residue) to test their effect on the contact event. The CRD loses its affinity for recognition on the N350A, E354A, and D355A substitutions. Thus, this heterogeneity of CRD recognition towards Carbohydrate provides fresh information about the immune system's theragnostic function. This new understanding of Ca2+-induced recognition may help design new theragnostic applications that boost our immune defenses against pathogenic evasion.

DC-SIGN通过Ca2+离子串扰增强对甘露糖CPS单位的识别的计算见解。
免疫系统c型凝集素受体(CLRs)的碳水化合物识别结构域(CRD)优先与荚膜多糖(CPS)单元相互作用。隐式Ca2+离子对CRD功能至关重要。离子浓度的增加明显地影响了CRD对CPS的识别。DC-SIGN就是这样一种CLR,用于微生物CPS的鉴别识别。CPS甘露糖的结合能最低(ΔG -4.7 kcal/mol),对DC-SIGN的亲和力最大。在本研究中,配体亲和力随着Ca2+浓度的升高而增加,最高可达1.5 m。谷氨酸(347)、脯氨酸(348)和天冬酰胺(349)(EPN)是先前报道的CPS单位协调的必要成分。我们的分析表明,除了EPN残基外,CPS单元还与邻近的天冬酰胺(350)、谷氨酸(354)和天冬酰胺(355)残基相互作用。因此,这些残基一次一个地被丙氨酸(一种电荷中性残基)取代,以测试它们对接触事件的影响。CRD在N350A、E354A和D355A取代基上失去了识别亲和力。因此,这种CRD对碳水化合物识别的异质性为免疫系统的诊断功能提供了新的信息。这种对Ca2+诱导的识别的新理解可能有助于设计新的诊断应用,增强我们对病原逃避的免疫防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信