Low-latency hierarchical routing of reconfigurable neuromorphic systems.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1493623
Samalika Perera, Ying Xu, André van Schaik, Runchun Wang
{"title":"Low-latency hierarchical routing of reconfigurable neuromorphic systems.","authors":"Samalika Perera, Ying Xu, André van Schaik, Runchun Wang","doi":"10.3389/fnins.2025.1493623","DOIUrl":null,"url":null,"abstract":"<p><p>A reconfigurable hardware accelerator implementation for spiking neural network (SNN) simulation using field-programmable gate arrays (FPGAs) is promising and attractive research because massive parallelism results in better execution speed. For large-scale SNN simulations, a large number of FPGAs are needed. However, inter-FPGA communication bottlenecks cause congestion, data losses, and latency inefficiencies. In this work, we employed a hierarchical tree-based interconnection architecture for multi-FPGAs. This architecture is scalable as new branches can be added to a tree, maintaining a constant local bandwidth. The tree-based approach contrasts with linear Network on Chip (NoC), where congestion can arise from numerous connections. We propose a routing architecture that introduces an arbiter mechanism by employing stochastic arbitration considering data level queues of First In, First Out (FIFO) buffers. This mechanism effectively reduces the bottleneck caused by FIFO congestion, resulting in improved overall latency. Results present measurement data collected for performance analysis of latency. We compared the performance of the design using our proposed stochastic routing scheme to a traditional round-robin architecture. The results demonstrate that the stochastic arbiters achieve lower worst-case latency and improved overall performance compared to the round-robin arbiters.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1493623"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1493623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A reconfigurable hardware accelerator implementation for spiking neural network (SNN) simulation using field-programmable gate arrays (FPGAs) is promising and attractive research because massive parallelism results in better execution speed. For large-scale SNN simulations, a large number of FPGAs are needed. However, inter-FPGA communication bottlenecks cause congestion, data losses, and latency inefficiencies. In this work, we employed a hierarchical tree-based interconnection architecture for multi-FPGAs. This architecture is scalable as new branches can be added to a tree, maintaining a constant local bandwidth. The tree-based approach contrasts with linear Network on Chip (NoC), where congestion can arise from numerous connections. We propose a routing architecture that introduces an arbiter mechanism by employing stochastic arbitration considering data level queues of First In, First Out (FIFO) buffers. This mechanism effectively reduces the bottleneck caused by FIFO congestion, resulting in improved overall latency. Results present measurement data collected for performance analysis of latency. We compared the performance of the design using our proposed stochastic routing scheme to a traditional round-robin architecture. The results demonstrate that the stochastic arbiters achieve lower worst-case latency and improved overall performance compared to the round-robin arbiters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信