Genome size evolution and phenotypic correlates in the poison frog family Dendrobatidae.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-02-18 DOI:10.1093/evolut/qpaf011
Tyler E Douglas, Roberto Márquez, V Renee Holmes, J Spencer Johnston, Rebecca D Tarvin
{"title":"Genome size evolution and phenotypic correlates in the poison frog family Dendrobatidae.","authors":"Tyler E Douglas, Roberto Márquez, V Renee Holmes, J Spencer Johnston, Rebecca D Tarvin","doi":"10.1093/evolut/qpaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive and neutral processes have produced a spectrum of genome sizes across organisms. Amphibians in particular possess a wide range in C-values, from <1 to over 125 pg. However, the genome size of most amphibians is unknown, and no single family has been comprehensively assessed. We provide new estimates for 32 poison frog species representing the major lineages within Dendrobatidae using Feulgen staining of museum specimens and flow cytometry of fresh tissue. We show that genome size in Dendrobatidae has likely evolved gradually, with potential evolutionary rate shifts in the genera Phyllobates and Hyloxalus, which respectively possess species with the largest (13.0 pg) and second smallest (2.6 pg) genomes in the family. Phylogenetically controlled regression analyses indicate that genome size is positively correlated with snout-vent-length, oocyte number, and clutch size, but negatively correlated with active metabolic rate and metabolic scope. While body size and metabolic rate are also correlates of toxicity, we found no relationship between genome size and evolution of chemical defense within Dendrobatidae. Genome size evolution in Dendrobatidae provides insight into the processes shaping genome size evolution over short timescales and establishes a novel system in which to study the mechanistic links between genome size and organismal physiology.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf011","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive and neutral processes have produced a spectrum of genome sizes across organisms. Amphibians in particular possess a wide range in C-values, from <1 to over 125 pg. However, the genome size of most amphibians is unknown, and no single family has been comprehensively assessed. We provide new estimates for 32 poison frog species representing the major lineages within Dendrobatidae using Feulgen staining of museum specimens and flow cytometry of fresh tissue. We show that genome size in Dendrobatidae has likely evolved gradually, with potential evolutionary rate shifts in the genera Phyllobates and Hyloxalus, which respectively possess species with the largest (13.0 pg) and second smallest (2.6 pg) genomes in the family. Phylogenetically controlled regression analyses indicate that genome size is positively correlated with snout-vent-length, oocyte number, and clutch size, but negatively correlated with active metabolic rate and metabolic scope. While body size and metabolic rate are also correlates of toxicity, we found no relationship between genome size and evolution of chemical defense within Dendrobatidae. Genome size evolution in Dendrobatidae provides insight into the processes shaping genome size evolution over short timescales and establishes a novel system in which to study the mechanistic links between genome size and organismal physiology.

毒蛙科的基因组大小进化和表型相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信