Experimental evolution reveals trade-offs between sexual selection and heat tolerance in Drosophila prolongata.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-02-18 DOI:10.1093/evolut/qpaf035
Alessio N De Nardo, Abhishek Meena, Komal Maggu, Benjamin Eggs, Sonja H Sbilordo, Stefan Lüpold
{"title":"Experimental evolution reveals trade-offs between sexual selection and heat tolerance in Drosophila prolongata.","authors":"Alessio N De Nardo, Abhishek Meena, Komal Maggu, Benjamin Eggs, Sonja H Sbilordo, Stefan Lüpold","doi":"10.1093/evolut/qpaf035","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual selection promotes traits that enhance mating or fertilization success, but these traits can be very costly under harsh environmental conditions. The extent to which differential investment in costly traits under varying intensities of sexual selection is related to their susceptibility to environmental stress remains unclear. This study explored how experimental evolution under different operational sex ratios (OSRs) shapes traits and reproductive success of male Drosophila prolongata, and how developmental and/or adult heat stress affect the expression of these traits. We found males from even and slightly male-biased OSRs to be larger and display greater reduction in body size under developmental heat stress, suggesting pre-mating sexual selection on body size and condition-dependent thermal sensitivity. These populations also exhibited consistently high mating and fertilization success across temperatures, potentially indicating selection for robust phenotypes with 'good genes' that perform well regardless of temperature. Conversely, males from strongly male-biased OSR populations experienced more pronounced decline in sperm competitiveness following exposure to developmental or adult heat stress. These results highlight how environmental stressors differentially impact populations, shaped by varying strengths of pre- and post-mating sexual selection. These observed patterns suggest potential interactions between past selection and the ability to adapt to changing environments.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf035","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sexual selection promotes traits that enhance mating or fertilization success, but these traits can be very costly under harsh environmental conditions. The extent to which differential investment in costly traits under varying intensities of sexual selection is related to their susceptibility to environmental stress remains unclear. This study explored how experimental evolution under different operational sex ratios (OSRs) shapes traits and reproductive success of male Drosophila prolongata, and how developmental and/or adult heat stress affect the expression of these traits. We found males from even and slightly male-biased OSRs to be larger and display greater reduction in body size under developmental heat stress, suggesting pre-mating sexual selection on body size and condition-dependent thermal sensitivity. These populations also exhibited consistently high mating and fertilization success across temperatures, potentially indicating selection for robust phenotypes with 'good genes' that perform well regardless of temperature. Conversely, males from strongly male-biased OSR populations experienced more pronounced decline in sperm competitiveness following exposure to developmental or adult heat stress. These results highlight how environmental stressors differentially impact populations, shaped by varying strengths of pre- and post-mating sexual selection. These observed patterns suggest potential interactions between past selection and the ability to adapt to changing environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信