Investigating dynamic brain functional redundancy as a mechanism of cognitive reserve.

IF 4.1 2区 医学 Q2 GERIATRICS & GERONTOLOGY
Frontiers in Aging Neuroscience Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.3389/fnagi.2025.1535657
Julia Schwarz, Franziska Zistler, Adriana Usheva, Anika Fix, Sebastian Zinn, Juliana Zimmermann, Franziska Knolle, Gerhard Schneider, Rachel Nuttall
{"title":"Investigating dynamic brain functional redundancy as a mechanism of cognitive reserve.","authors":"Julia Schwarz, Franziska Zistler, Adriana Usheva, Anika Fix, Sebastian Zinn, Juliana Zimmermann, Franziska Knolle, Gerhard Schneider, Rachel Nuttall","doi":"10.3389/fnagi.2025.1535657","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Individuals with higher cognitive reserve (CR) are thought to be more resilient to the effects of age-related brain changes on cognitive performance. A potential mechanism of CR is redundancy in brain network functional connectivity (BFR), which refers to the amount of time the brain spends in a redundant state, indicating the presence of multiple independent pathways between brain regions. These can serve as back-up information processing routes, providing resiliency in the presence of stress or disease. In this study we aimed to investigate whether BFR modulates the association between age-related brain changes and cognitive performance across a broad range of cognitive domains.</p><p><strong>Methods: </strong>An open-access neuroimaging and behavioral dataset (<i>n</i> = 301 healthy participants, 18-89 years) was analyzed. Cortical gray matter (GM) volume, cortical thickness and brain age, extracted from structural T1 images, served as our measures of life-course related brain changes (BC). Cognitive scores were extracted from principal component analysis performed on 13 cognitive tests across multiple cognitive domains. Multivariate linear regression tested the modulating effect of BFR on the relationship between age-related brain changes and cognitive performance.</p><p><strong>Results: </strong>PCA revealed three cognitive test components related to episodic, semantic and executive functioning. Increased BFR predicted reduced performance in episodic functioning when considering cortical thickness and GM volume as measures of BC. BFR significantly modulated the relationship between cortical thickness and episodic functioning. We found neither a predictive nor modulating effect of BFR on semantic or executive performance, nor a significant effect when defining BC via brain age.</p><p><strong>Discussion: </strong>Our results suggest that BFR could serve as a metric of CR when considering certain cognitive domains, specifically episodic functioning, and defined dimensions of BC. These findings potentially indicate the presence of multiple underlying mechanisms of CR.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1535657"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1535657","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Individuals with higher cognitive reserve (CR) are thought to be more resilient to the effects of age-related brain changes on cognitive performance. A potential mechanism of CR is redundancy in brain network functional connectivity (BFR), which refers to the amount of time the brain spends in a redundant state, indicating the presence of multiple independent pathways between brain regions. These can serve as back-up information processing routes, providing resiliency in the presence of stress or disease. In this study we aimed to investigate whether BFR modulates the association between age-related brain changes and cognitive performance across a broad range of cognitive domains.

Methods: An open-access neuroimaging and behavioral dataset (n = 301 healthy participants, 18-89 years) was analyzed. Cortical gray matter (GM) volume, cortical thickness and brain age, extracted from structural T1 images, served as our measures of life-course related brain changes (BC). Cognitive scores were extracted from principal component analysis performed on 13 cognitive tests across multiple cognitive domains. Multivariate linear regression tested the modulating effect of BFR on the relationship between age-related brain changes and cognitive performance.

Results: PCA revealed three cognitive test components related to episodic, semantic and executive functioning. Increased BFR predicted reduced performance in episodic functioning when considering cortical thickness and GM volume as measures of BC. BFR significantly modulated the relationship between cortical thickness and episodic functioning. We found neither a predictive nor modulating effect of BFR on semantic or executive performance, nor a significant effect when defining BC via brain age.

Discussion: Our results suggest that BFR could serve as a metric of CR when considering certain cognitive domains, specifically episodic functioning, and defined dimensions of BC. These findings potentially indicate the presence of multiple underlying mechanisms of CR.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Aging Neuroscience
Frontiers in Aging Neuroscience GERIATRICS & GERONTOLOGY-NEUROSCIENCES
CiteScore
6.30
自引率
8.30%
发文量
1426
期刊介绍: Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信