Sex estimation with convolutional neural networks using the patella magnetic resonance image slices.

IF 1.5 4区 医学 Q2 MEDICINE, LEGAL
Nevin Cavlak, Gökalp Çınarer, Mustafa Fatih Erkoç, Kazım Kılıç
{"title":"Sex estimation with convolutional neural networks using the patella magnetic resonance image slices.","authors":"Nevin Cavlak, Gökalp Çınarer, Mustafa Fatih Erkoç, Kazım Kılıç","doi":"10.1007/s12024-025-00943-7","DOIUrl":null,"url":null,"abstract":"<p><p>Conducting sex estimation based on bones through morphometric methods increases the need for automatic image analyses, as doing so requires experienced staff and is a time-consuming process. In this study, sex estimation was performed with the EfficientNetB3, MobileNetV2, Visual Geometry Group 16 (VGG16), ResNet50, and DenseNet121 architectures on patellar magnetic resonance images via a developed model. Within the scope of the study, 6710 magnetic resonance sagittal patella image slices of 696 patients (293 males and 403 females) were obtained. The performance of artificial intelligence algorithms was examined through deep learning architectures and the developed classification model. Considering the performance evaluation criteria, the best accuracy result of 88.88% was obtained with the ResNet50 model. In addition, the proposed model was among the best-performing models with an accuracy of 85.70%. When all these results were examined, it was concluded that positive sex estimation results could be obtained from patella magnetic resonance image (MRI) slices without the use of the morphometric method.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00943-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting sex estimation based on bones through morphometric methods increases the need for automatic image analyses, as doing so requires experienced staff and is a time-consuming process. In this study, sex estimation was performed with the EfficientNetB3, MobileNetV2, Visual Geometry Group 16 (VGG16), ResNet50, and DenseNet121 architectures on patellar magnetic resonance images via a developed model. Within the scope of the study, 6710 magnetic resonance sagittal patella image slices of 696 patients (293 males and 403 females) were obtained. The performance of artificial intelligence algorithms was examined through deep learning architectures and the developed classification model. Considering the performance evaluation criteria, the best accuracy result of 88.88% was obtained with the ResNet50 model. In addition, the proposed model was among the best-performing models with an accuracy of 85.70%. When all these results were examined, it was concluded that positive sex estimation results could be obtained from patella magnetic resonance image (MRI) slices without the use of the morphometric method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Forensic Science, Medicine and Pathology
Forensic Science, Medicine and Pathology MEDICINE, LEGAL-PATHOLOGY
CiteScore
3.90
自引率
5.60%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信