Nevin Cavlak, Gökalp Çınarer, Mustafa Fatih Erkoç, Kazım Kılıç
{"title":"Sex estimation with convolutional neural networks using the patella magnetic resonance image slices.","authors":"Nevin Cavlak, Gökalp Çınarer, Mustafa Fatih Erkoç, Kazım Kılıç","doi":"10.1007/s12024-025-00943-7","DOIUrl":null,"url":null,"abstract":"<p><p>Conducting sex estimation based on bones through morphometric methods increases the need for automatic image analyses, as doing so requires experienced staff and is a time-consuming process. In this study, sex estimation was performed with the EfficientNetB3, MobileNetV2, Visual Geometry Group 16 (VGG16), ResNet50, and DenseNet121 architectures on patellar magnetic resonance images via a developed model. Within the scope of the study, 6710 magnetic resonance sagittal patella image slices of 696 patients (293 males and 403 females) were obtained. The performance of artificial intelligence algorithms was examined through deep learning architectures and the developed classification model. Considering the performance evaluation criteria, the best accuracy result of 88.88% was obtained with the ResNet50 model. In addition, the proposed model was among the best-performing models with an accuracy of 85.70%. When all these results were examined, it was concluded that positive sex estimation results could be obtained from patella magnetic resonance image (MRI) slices without the use of the morphometric method.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00943-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conducting sex estimation based on bones through morphometric methods increases the need for automatic image analyses, as doing so requires experienced staff and is a time-consuming process. In this study, sex estimation was performed with the EfficientNetB3, MobileNetV2, Visual Geometry Group 16 (VGG16), ResNet50, and DenseNet121 architectures on patellar magnetic resonance images via a developed model. Within the scope of the study, 6710 magnetic resonance sagittal patella image slices of 696 patients (293 males and 403 females) were obtained. The performance of artificial intelligence algorithms was examined through deep learning architectures and the developed classification model. Considering the performance evaluation criteria, the best accuracy result of 88.88% was obtained with the ResNet50 model. In addition, the proposed model was among the best-performing models with an accuracy of 85.70%. When all these results were examined, it was concluded that positive sex estimation results could be obtained from patella magnetic resonance image (MRI) slices without the use of the morphometric method.
期刊介绍:
Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.