Maternal Exposure of SD Rats to Benzo[a]Pyrene Impairs Neurobehavior and Hippocampal Synaptic Ultrastructure in Offspring via Downregulating Synaptic-Associated Factors.
Yu Zhang, Yuting Guo, Linhu Du, Junxiu Zhao, Xiaorui Ci, Jinzhu Yin, Qiao Niu, Yiqun Mo, Qunwei Zhang, Jisheng Nie
{"title":"Maternal Exposure of SD Rats to Benzo[a]Pyrene Impairs Neurobehavior and Hippocampal Synaptic Ultrastructure in Offspring via Downregulating Synaptic-Associated Factors.","authors":"Yu Zhang, Yuting Guo, Linhu Du, Junxiu Zhao, Xiaorui Ci, Jinzhu Yin, Qiao Niu, Yiqun Mo, Qunwei Zhang, Jisheng Nie","doi":"10.1002/tox.24489","DOIUrl":null,"url":null,"abstract":"<p><p>Benzo[a]pyrene (B[a]P) is a carcinogenic contaminant widely present in the environment. Recently, increasing studies have paid attention to the developmental neurotoxicity of B[a]P in offspring in their early life stages; however, the underlying molecular mechanisms have not been clearly elucidated. In this study, we aimed to evaluate the effects of prenatal B[a]P exposure on neurobehavior of pups during their brain growth spurt (BGS) period and also explore the potential underlying mechanisms. Pregnant Sprague-Dawley (SD) rats were intraperitoneally exposed to 0, 10, 20, or 40 mg/kg-bw B[a]P for three consecutive days during embryonic days 17-19. The physiological development index of pups was observed, and a series of neurobehavioral tests assessing sensory and motor maturation were performed. The complexity of dendritic branches and the basal dendritic spine density of CA1 pyramidal neurons were examined using Golgi-Cox staining during PND 1-14. In addition, the mRNA and protein expression levels of hippocampal BDNF, SYP, Arc, PSD-95, DNMT1, and DNMT3a, and the level of 5-mC were detected using RT-qPCR, Western blotting, or immunohistochemical staining, respectively. We noted that prenatal B[a]P exposure induced body weight loss and neurobehavioral impairments in the early life stages. Furthermore, this study firstly revealed that maternal exposure to B[a]P impaired the dendritic arborization and complexity of pyramidal neurons in the hippocampus CA1 subfield in offspring during the early postnatal period, and the damage of B[a]P to basal dendritic spine density was also observed in a dose-dependent manner. Correspondingly, maternal exposure to B[a]P markedly reduced BDNF, Arc, SYP, and PSD-95 mRNA and protein levels in the offspring hippocampus. Meanwhile, the levels of hippocampal DNMT1, DNMT3a, and 5-mC significantly increased in the offspring prenatally exposed to B[a]P. In summary, this study firstly demonstrated that maternal B[a]P exposure induced neurobehavioral deficits by destroying the hippocampal synaptic ultrastructure, which was possibly associated with the downregulation of BDNF, Arc, SYP, and PSD95 in the hippocampus through increased DNMTs-mediated DNA methylation in offspring during the BGS period.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24489","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Benzo[a]pyrene (B[a]P) is a carcinogenic contaminant widely present in the environment. Recently, increasing studies have paid attention to the developmental neurotoxicity of B[a]P in offspring in their early life stages; however, the underlying molecular mechanisms have not been clearly elucidated. In this study, we aimed to evaluate the effects of prenatal B[a]P exposure on neurobehavior of pups during their brain growth spurt (BGS) period and also explore the potential underlying mechanisms. Pregnant Sprague-Dawley (SD) rats were intraperitoneally exposed to 0, 10, 20, or 40 mg/kg-bw B[a]P for three consecutive days during embryonic days 17-19. The physiological development index of pups was observed, and a series of neurobehavioral tests assessing sensory and motor maturation were performed. The complexity of dendritic branches and the basal dendritic spine density of CA1 pyramidal neurons were examined using Golgi-Cox staining during PND 1-14. In addition, the mRNA and protein expression levels of hippocampal BDNF, SYP, Arc, PSD-95, DNMT1, and DNMT3a, and the level of 5-mC were detected using RT-qPCR, Western blotting, or immunohistochemical staining, respectively. We noted that prenatal B[a]P exposure induced body weight loss and neurobehavioral impairments in the early life stages. Furthermore, this study firstly revealed that maternal exposure to B[a]P impaired the dendritic arborization and complexity of pyramidal neurons in the hippocampus CA1 subfield in offspring during the early postnatal period, and the damage of B[a]P to basal dendritic spine density was also observed in a dose-dependent manner. Correspondingly, maternal exposure to B[a]P markedly reduced BDNF, Arc, SYP, and PSD-95 mRNA and protein levels in the offspring hippocampus. Meanwhile, the levels of hippocampal DNMT1, DNMT3a, and 5-mC significantly increased in the offspring prenatally exposed to B[a]P. In summary, this study firstly demonstrated that maternal B[a]P exposure induced neurobehavioral deficits by destroying the hippocampal synaptic ultrastructure, which was possibly associated with the downregulation of BDNF, Arc, SYP, and PSD95 in the hippocampus through increased DNMTs-mediated DNA methylation in offspring during the BGS period.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.