Christine C Krieger, Susanne Neumann, Xiangliang Sui, Jay Scott Templin, Topprasad Kapri, Violeta G Demillo, Ryan K Olsen, Amarawan Intasiri, Marvin C Gershengorn, Thomas W Bell
{"title":"Inhibition of TSH Receptor Expression by a Cyclotriazadisulfonamide as a Potential Treatment of Graves Hyperthyroidism.","authors":"Christine C Krieger, Susanne Neumann, Xiangliang Sui, Jay Scott Templin, Topprasad Kapri, Violeta G Demillo, Ryan K Olsen, Amarawan Intasiri, Marvin C Gershengorn, Thomas W Bell","doi":"10.1210/endocr/bqaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Graves hyperthyroidism (GH) is a condition in which autoantibodies chronically activate the thyrotropin (TSH) receptor (TSHR). TSHR is one of the few G protein-coupled receptors (GPCRs) predicted to have a signal peptide, making it a potential target for cyclotriazadisulfonamide (CADA) compounds. We sought to determine whether a small-molecule drug that selectively induces nascent protein degradation could decrease TSHR expression in vitro and in vivo at therapeutically relevant levels. We tested several CADA compounds for their ability to reduce TSHR surface expression in HEK 293 cells overexpressing human TSHR (HEK-TSHR cells) using flow cytometry. Inhibition of downstream cAMP production and thyroglobulin (Tg) secretion were measured in HEK-TSHR and human thyrocytes, respectively. Follow-up studies in VGD040-treated BALB/c mice assessed plasma levels of free T4 in response to TSH stimulation. Among a number of CADA analogues, VGD040 decreased TSHR at the surface of HEK-TSHR cells. VGD040 was found to be selective toward TSHR compared to similar glycoprotein hormone receptors. In human thyrocytes, reduction of TSHR surface expression by VGD040 decreased cyclic adenosine monophosphate production and Tg secretion. Most important, VGD040 decreased TH secretion in mice without apparent toxicity at the effective dose studied. VGD040 is an important new lead with potential for developing safe drug treatments for GH.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Graves hyperthyroidism (GH) is a condition in which autoantibodies chronically activate the thyrotropin (TSH) receptor (TSHR). TSHR is one of the few G protein-coupled receptors (GPCRs) predicted to have a signal peptide, making it a potential target for cyclotriazadisulfonamide (CADA) compounds. We sought to determine whether a small-molecule drug that selectively induces nascent protein degradation could decrease TSHR expression in vitro and in vivo at therapeutically relevant levels. We tested several CADA compounds for their ability to reduce TSHR surface expression in HEK 293 cells overexpressing human TSHR (HEK-TSHR cells) using flow cytometry. Inhibition of downstream cAMP production and thyroglobulin (Tg) secretion were measured in HEK-TSHR and human thyrocytes, respectively. Follow-up studies in VGD040-treated BALB/c mice assessed plasma levels of free T4 in response to TSH stimulation. Among a number of CADA analogues, VGD040 decreased TSHR at the surface of HEK-TSHR cells. VGD040 was found to be selective toward TSHR compared to similar glycoprotein hormone receptors. In human thyrocytes, reduction of TSHR surface expression by VGD040 decreased cyclic adenosine monophosphate production and Tg secretion. Most important, VGD040 decreased TH secretion in mice without apparent toxicity at the effective dose studied. VGD040 is an important new lead with potential for developing safe drug treatments for GH.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.