Potential value of immunogenic cell death related-genes in refining European leukemiaNet guidelines classification and predicting the immune infiltration landscape in acute myeloid leukemia.
{"title":"Potential value of immunogenic cell death related-genes in refining European leukemiaNet guidelines classification and predicting the immune infiltration landscape in acute myeloid leukemia.","authors":"Changqing Jiao, Xiaoyu Ma, Jianling Cui, Bobin Su, Fei Xu, Enbo Chen, Junjie Zhou, Jifei Dai, Mengya Pan, Zhangbiao Long, Jian Ge","doi":"10.1186/s12935-025-03670-9","DOIUrl":null,"url":null,"abstract":"<p><p>Immunogenic cell death (ICD) is the kind of cell death that triggers the immune system. It affects several tumors, whereas its significance for prognosis in acute myeloid leukemia (AML) remains uncertain. AML categorization by cytogenetic variables is inaccurate. In addition, risk stratification of AML based on cytogenetics is imprecise. The data of AML patients were extracted from 4 databases, a total of 1,537 patients. Univariate and LASSO Cox regression analyses were conducted to construct an ICD risk signature (ICDRS). The ICDRS showed strong prognostic value for AML through Kaplan-Meier, Cox, ROC analyses and nomogram. Combining the ICDRS with the European LeukemiaNet (ELN) classification to redefine the risk stratification can better predict the prognosis of AML. Moreover, the ICDRS was examined to identify gene functional enrichment, immunological characteristics, drug susceptibility, and somatic mutation, which revealed considerable variations among different risk categories. We further validated the expression of ICDRS in the AML bone marrow microenvironment by single-cell RNA (scRNA) analysis. Ultimately, the functional role of CASP1 was proven in AML by a series of in-vitro experiments. Our study highlights the significant impact of ICDRS on AML, which may improve ELN risk classification, predict immune landscapes, and guide personalized therapy.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"52"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03670-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunogenic cell death (ICD) is the kind of cell death that triggers the immune system. It affects several tumors, whereas its significance for prognosis in acute myeloid leukemia (AML) remains uncertain. AML categorization by cytogenetic variables is inaccurate. In addition, risk stratification of AML based on cytogenetics is imprecise. The data of AML patients were extracted from 4 databases, a total of 1,537 patients. Univariate and LASSO Cox regression analyses were conducted to construct an ICD risk signature (ICDRS). The ICDRS showed strong prognostic value for AML through Kaplan-Meier, Cox, ROC analyses and nomogram. Combining the ICDRS with the European LeukemiaNet (ELN) classification to redefine the risk stratification can better predict the prognosis of AML. Moreover, the ICDRS was examined to identify gene functional enrichment, immunological characteristics, drug susceptibility, and somatic mutation, which revealed considerable variations among different risk categories. We further validated the expression of ICDRS in the AML bone marrow microenvironment by single-cell RNA (scRNA) analysis. Ultimately, the functional role of CASP1 was proven in AML by a series of in-vitro experiments. Our study highlights the significant impact of ICDRS on AML, which may improve ELN risk classification, predict immune landscapes, and guide personalized therapy.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.