Darshan Ramasubramanian, José Luis Hernández-Verdejo, José Manuel López-Alonso
{"title":"Influence of Contact Lens Parameters on Tear Film Dynamics.","authors":"Darshan Ramasubramanian, José Luis Hernández-Verdejo, José Manuel López-Alonso","doi":"10.1007/s11538-025-01425-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs a computational model to simulate the dynamics of tear fluid and tear film in conjunction with contact lens motion, examining the interplay between diverse contact lens characteristics-such as material, design, and dimensions-and key ocular factors like dry eye conditions, corneal size, and blink rate. These interactions are critical for customising lens fit to maximise wearer comfort. Utilising optical measurements from a single participant, the study integrates data on tear meniscus size, blink velocity, and palpebral fissure height with sixteen different contact lens parameters, including Young's modulus, thickness, diameter, and curvature. Correlation analyses were conducted to determine the impact of these parameters on the dynamics of the tear fluid and overall tear film. Results show that the diameter and Young's modulus of the contact lens significantly influence pre-lens tear film thickness, with robust, statistically significant correlations. In contrast, lens thickness and base curve showed minimal impact, as evidenced by weak and non-significant correlations. These findings underscore the critical roles of lens diameter and Young's modulus in enhancing the stability and distribution of tear fluid, thereby improving wearer comfort and advancing contact lens design.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 4","pages":"45"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01425-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a computational model to simulate the dynamics of tear fluid and tear film in conjunction with contact lens motion, examining the interplay between diverse contact lens characteristics-such as material, design, and dimensions-and key ocular factors like dry eye conditions, corneal size, and blink rate. These interactions are critical for customising lens fit to maximise wearer comfort. Utilising optical measurements from a single participant, the study integrates data on tear meniscus size, blink velocity, and palpebral fissure height with sixteen different contact lens parameters, including Young's modulus, thickness, diameter, and curvature. Correlation analyses were conducted to determine the impact of these parameters on the dynamics of the tear fluid and overall tear film. Results show that the diameter and Young's modulus of the contact lens significantly influence pre-lens tear film thickness, with robust, statistically significant correlations. In contrast, lens thickness and base curve showed minimal impact, as evidenced by weak and non-significant correlations. These findings underscore the critical roles of lens diameter and Young's modulus in enhancing the stability and distribution of tear fluid, thereby improving wearer comfort and advancing contact lens design.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.