The influence of different factors on the bond strength of lithium disilicate-reinforced glass-ceramics to Resin: a machine learning analysis.

IF 2.6 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Jiawen Liu, Suqing Tu, Mingjuan Wang, Du Chen, Chen Chen, Haifeng Xie
{"title":"The influence of different factors on the bond strength of lithium disilicate-reinforced glass-ceramics to Resin: a machine learning analysis.","authors":"Jiawen Liu, Suqing Tu, Mingjuan Wang, Du Chen, Chen Chen, Haifeng Xie","doi":"10.1186/s12903-025-05590-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To assess the influence of various factors on the bond strength of glass-based ceramics and develop a model that can predict the bond strength values using machine learning (ML).</p><p><strong>Methods: </strong>The bond strength values of lithium disilicate-reinforced glass-ceramics were collected from existing literature. Nineteen features were listed, and 9 ML algorithms, including logistic regression, k-nearest neighbors, support vector machine, decision tree, ensemble methods (extra trees, random forest, gradient boosting, and extreme gradient boosting), and multilayer perceptron, were employed. Importance analysis was performed to determine the significance of the 19 features. A new data set comprising the top five contributing features was used for bond strength class prediction. Grid search cross-validation (CV) and stratified tenfold CV were employed for hyperparameter tuning and model performance assessments. The evaluation metrics used were the area under the receiver operating characteristic curve (AUC) and accuracy. Nested CV was also employed to assess the model performance and avoid untruly optimistic results.</p><p><strong>Results: </strong>A total of 193 bond strength values were collected. Hydrofluoric acid concentration and etching time, gamma-methacryloxypropyltrimethoxysilane or 10-methacryloxydecyldihydrogen phosphate in the primer, and Bis-GMA in the cement were the top five features contributing to the bond strength. Stratified CV produced AUC scores of 0.71-0.93 and accuracy scores of 0.64-0.83. Extreme gradient boosting achieved superior model performance and accuracy and demonstrated good performance in predicting the range of bond strength values.</p><p><strong>Conclusions: </strong>ML shows promise as a data-driven tool for predicting the bond strength of glass-based ceramics to resin.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"256"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05590-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To assess the influence of various factors on the bond strength of glass-based ceramics and develop a model that can predict the bond strength values using machine learning (ML).

Methods: The bond strength values of lithium disilicate-reinforced glass-ceramics were collected from existing literature. Nineteen features were listed, and 9 ML algorithms, including logistic regression, k-nearest neighbors, support vector machine, decision tree, ensemble methods (extra trees, random forest, gradient boosting, and extreme gradient boosting), and multilayer perceptron, were employed. Importance analysis was performed to determine the significance of the 19 features. A new data set comprising the top five contributing features was used for bond strength class prediction. Grid search cross-validation (CV) and stratified tenfold CV were employed for hyperparameter tuning and model performance assessments. The evaluation metrics used were the area under the receiver operating characteristic curve (AUC) and accuracy. Nested CV was also employed to assess the model performance and avoid untruly optimistic results.

Results: A total of 193 bond strength values were collected. Hydrofluoric acid concentration and etching time, gamma-methacryloxypropyltrimethoxysilane or 10-methacryloxydecyldihydrogen phosphate in the primer, and Bis-GMA in the cement were the top five features contributing to the bond strength. Stratified CV produced AUC scores of 0.71-0.93 and accuracy scores of 0.64-0.83. Extreme gradient boosting achieved superior model performance and accuracy and demonstrated good performance in predicting the range of bond strength values.

Conclusions: ML shows promise as a data-driven tool for predicting the bond strength of glass-based ceramics to resin.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信