Evaluating interactions of patients with large language models for medical information.

IF 3.7 2区 医学 Q1 UROLOGY & NEPHROLOGY
Nicolas Carl, Sarah Haggenmüller, Christoph Wies, Lisa Nguyen, Jana Theres Winterstein, Martin Joachim Hetz, Maurin Helen Mangold, Friedrich Otto Hartung, Britta Grüne, Tim Holland-Letz, Maurice Stephan Michel, Titus Josef Brinker, Frederik Wessels
{"title":"Evaluating interactions of patients with large language models for medical information.","authors":"Nicolas Carl, Sarah Haggenmüller, Christoph Wies, Lisa Nguyen, Jana Theres Winterstein, Martin Joachim Hetz, Maurin Helen Mangold, Friedrich Otto Hartung, Britta Grüne, Tim Holland-Letz, Maurice Stephan Michel, Titus Josef Brinker, Frederik Wessels","doi":"10.1111/bju.16676","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the interaction of real-world patients with a chatbot in a clinical setting, investigating key aspects of medical information provided by large language models (LLMs).</p><p><strong>Patients and methods: </strong>The study enrolled 300 patients seeking urological counselling between February and July 2024. First, participants voluntarily conversed with a Generative Pre-trained Transformer 4 (GPT-4) powered chatbot to ask questions related to their medical situation. In the following survey, patients rated the perceived utility, completeness, and understandability of the information provided during the simulated conversation as well as user-friendliness. Finally, patients were asked which, in their experience, best answered their questions: LLMs, urologists, or search engines.</p><p><strong>Results: </strong>A total of 292 patients completed the study. The majority of patients perceived the chatbot as providing useful, complete, and understandable information, as well as being user-friendly. However, the ability of human urologists to answer medical questions in an understandable way was rated higher than of LLMs. Interestingly, 53% of participants rated the question-answering ability of LLMs higher than search engines. Age was not associated with preferences. Limitations include social desirability and sampling biases.</p><p><strong>Discussion: </strong>This study highlights the potential of LLMs to enhance patient education and communication in clinical settings, with patients valuing their user-friendliness and comprehensiveness for medical information. By addressing preliminary questions, LLMs could potentially relieve time constraints on healthcare providers, enabling medical personnel to focus on complex inquiries and patient care.</p>","PeriodicalId":8985,"journal":{"name":"BJU International","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJU International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bju.16676","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To explore the interaction of real-world patients with a chatbot in a clinical setting, investigating key aspects of medical information provided by large language models (LLMs).

Patients and methods: The study enrolled 300 patients seeking urological counselling between February and July 2024. First, participants voluntarily conversed with a Generative Pre-trained Transformer 4 (GPT-4) powered chatbot to ask questions related to their medical situation. In the following survey, patients rated the perceived utility, completeness, and understandability of the information provided during the simulated conversation as well as user-friendliness. Finally, patients were asked which, in their experience, best answered their questions: LLMs, urologists, or search engines.

Results: A total of 292 patients completed the study. The majority of patients perceived the chatbot as providing useful, complete, and understandable information, as well as being user-friendly. However, the ability of human urologists to answer medical questions in an understandable way was rated higher than of LLMs. Interestingly, 53% of participants rated the question-answering ability of LLMs higher than search engines. Age was not associated with preferences. Limitations include social desirability and sampling biases.

Discussion: This study highlights the potential of LLMs to enhance patient education and communication in clinical settings, with patients valuing their user-friendliness and comprehensiveness for medical information. By addressing preliminary questions, LLMs could potentially relieve time constraints on healthcare providers, enabling medical personnel to focus on complex inquiries and patient care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BJU International
BJU International 医学-泌尿学与肾脏学
CiteScore
9.10
自引率
4.40%
发文量
262
审稿时长
1 months
期刊介绍: BJUI is one of the most highly respected medical journals in the world, with a truly international range of published papers and appeal. Every issue gives invaluable practical information in the form of original articles, reviews, comments, surgical education articles, and translational science articles in the field of urology. BJUI employs topical sections, and is in full colour, making it easier to browse or search for something specific.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信