{"title":"Distinct explanations underlie gene-environment interactions in the UK Biobank.","authors":"Arun Durvasula, Alkes L Price","doi":"10.1016/j.ajhg.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (r<sub>g</sub>) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r<sub>g</sub> significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.