Distinct explanations underlie gene-environment interactions in the UK Biobank.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Arun Durvasula, Alkes L Price
{"title":"Distinct explanations underlie gene-environment interactions in the UK Biobank.","authors":"Arun Durvasula, Alkes L Price","doi":"10.1016/j.ajhg.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (r<sub>g</sub>) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r<sub>g</sub> significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信