Cascade Lanthanide-Triplet Energy Transfer for Nanocrystal-Sensitized Organic Photon Upconversion.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhijie Ju, Renren Deng
{"title":"Cascade Lanthanide-Triplet Energy Transfer for Nanocrystal-Sensitized Organic Photon Upconversion.","authors":"Zhijie Ju, Renren Deng","doi":"10.1002/anie.202422575","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202422575"},"PeriodicalIF":16.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422575","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信