Mapping coastal resilience: Precision insights for green infrastructure suitability.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Narcisa G Pricope, Elijah G Dalton
{"title":"Mapping coastal resilience: Precision insights for green infrastructure suitability.","authors":"Narcisa G Pricope, Elijah G Dalton","doi":"10.1016/j.jenvman.2025.124511","DOIUrl":null,"url":null,"abstract":"<p><p>Addressing the need for effective flood risk mitigation strategies and enhanced urban resilience to climate change, we introduce a cloud-computed Green Infrastructure Suitability Index (GISI) methodology. This approach combines remote sensing and geospatial modeling to create a cloud-computed blend that synthesizes land cover classifications, biophysical variables, and flood exposure data to map suitability for green infrastructure (GI) implementation at both street and landscape levels. The GISI methodology provides a flexible and robust tool for urban planning, capable of accommodating diverse data inputs and adjustments, making it suitable for various geographic contexts. Applied within the Wilmington Urban Area Metropolitan Planning Organization (WMPO) in North Carolina, USA, our findings show that residential parcels, constituting approximately 91% of the total identified suitable areas, are optimally positioned for GI integration. This underscores the potential for embedding GI within developed residential urban landscapes to bolster ecosystem and community resilience. Our analysis indicates that 7.19% of the WMPO area is highly suitable for street-level GI applications, while 1.88% is ideal for landscape GI interventions, offering opportunities to enhance stormwater management and biodiversity at larger and more connected spatial scales. By identifying specific parcels with high suitability for GI, this research provides a comprehensive and transferable, data-driven foundation for local and regional planning efforts. The scalability and adaptability of the proposed modeling approach make it a powerful tool for informing sustainable urban development practices. Future work will focus on more spatially-resolved models of these areas and the exploration of GI's multifaceted benefits at the local level, aiming to guide the deployment of GI projects that align with broader environmental and social objectives.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124511"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124511","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the need for effective flood risk mitigation strategies and enhanced urban resilience to climate change, we introduce a cloud-computed Green Infrastructure Suitability Index (GISI) methodology. This approach combines remote sensing and geospatial modeling to create a cloud-computed blend that synthesizes land cover classifications, biophysical variables, and flood exposure data to map suitability for green infrastructure (GI) implementation at both street and landscape levels. The GISI methodology provides a flexible and robust tool for urban planning, capable of accommodating diverse data inputs and adjustments, making it suitable for various geographic contexts. Applied within the Wilmington Urban Area Metropolitan Planning Organization (WMPO) in North Carolina, USA, our findings show that residential parcels, constituting approximately 91% of the total identified suitable areas, are optimally positioned for GI integration. This underscores the potential for embedding GI within developed residential urban landscapes to bolster ecosystem and community resilience. Our analysis indicates that 7.19% of the WMPO area is highly suitable for street-level GI applications, while 1.88% is ideal for landscape GI interventions, offering opportunities to enhance stormwater management and biodiversity at larger and more connected spatial scales. By identifying specific parcels with high suitability for GI, this research provides a comprehensive and transferable, data-driven foundation for local and regional planning efforts. The scalability and adaptability of the proposed modeling approach make it a powerful tool for informing sustainable urban development practices. Future work will focus on more spatially-resolved models of these areas and the exploration of GI's multifaceted benefits at the local level, aiming to guide the deployment of GI projects that align with broader environmental and social objectives.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信