Identifying critical riparian zones for eco-environmental management of the Yangtze River through pollution mapping.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Biqing Xia, Sisi Li, Zhigang Mei, Wangzheng Shen, Menghan Mi, Ziqi Qiang, Liang Zhang
{"title":"Identifying critical riparian zones for eco-environmental management of the Yangtze River through pollution mapping.","authors":"Biqing Xia, Sisi Li, Zhigang Mei, Wangzheng Shen, Menghan Mi, Ziqi Qiang, Liang Zhang","doi":"10.1016/j.jenvman.2025.124555","DOIUrl":null,"url":null,"abstract":"<p><p>Riparian zones, which are critical interfaces between terrestrial and aquatic ecosystems, are essential for biodiversity, water quality, and landscape stability but are increasingly threatened by anthropogenic activities. The Yangtze River is the longest river in Asia, the riparian zones of which are highly affected by humans, however, they are less studied in terms of pollution change and distribution, which hinders efficient eco-environmental management. This study explored land use and nitrogen and phosphorus non-point source pollution variations in the middle and lower Yangtze River riparian zones from 1995 to 2015 and identified critical risky segments as management priorities. The results revealed great human interventions: Agricultural and constructed lands accounted for 55.2% and 10.2% of the riparian zones, respectively, in 2015, whereas wetlands declined by 2.5% per decade. Using a modified export coefficient model considering terrestrial, climatic, and socioeconomic variations, we found that the nitrogen and phosphorus loads from the riparian zones exhibited a general decline over the two decades, but increased in certain segments due to urbanization. Approximately 10% of the segments contributed over 40% of the nutrient loads. In addition, some river segments with high nutrient loads coincided with ecologically sensitive zones with higher water-quality requirements. Hence, we identified critical riparian zones with higher pollution reduction requirements and management priorities, primarily in the middle reaches of the Yangtze River. This study integrates pollution-load mapping with water-quality target consideration, guiding resource allocation for pollution-control measures, and thus promoting the sustainable management of a key eco-environmental system in Asia.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124555"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124555","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Riparian zones, which are critical interfaces between terrestrial and aquatic ecosystems, are essential for biodiversity, water quality, and landscape stability but are increasingly threatened by anthropogenic activities. The Yangtze River is the longest river in Asia, the riparian zones of which are highly affected by humans, however, they are less studied in terms of pollution change and distribution, which hinders efficient eco-environmental management. This study explored land use and nitrogen and phosphorus non-point source pollution variations in the middle and lower Yangtze River riparian zones from 1995 to 2015 and identified critical risky segments as management priorities. The results revealed great human interventions: Agricultural and constructed lands accounted for 55.2% and 10.2% of the riparian zones, respectively, in 2015, whereas wetlands declined by 2.5% per decade. Using a modified export coefficient model considering terrestrial, climatic, and socioeconomic variations, we found that the nitrogen and phosphorus loads from the riparian zones exhibited a general decline over the two decades, but increased in certain segments due to urbanization. Approximately 10% of the segments contributed over 40% of the nutrient loads. In addition, some river segments with high nutrient loads coincided with ecologically sensitive zones with higher water-quality requirements. Hence, we identified critical riparian zones with higher pollution reduction requirements and management priorities, primarily in the middle reaches of the Yangtze River. This study integrates pollution-load mapping with water-quality target consideration, guiding resource allocation for pollution-control measures, and thus promoting the sustainable management of a key eco-environmental system in Asia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信