{"title":"Mapping water and monomer gradients in the adhesive/dentin interface with confocal micro-Raman imaging","authors":"Yong Wang, Xinglin Guo, Xiaomei Yao, Viviane Hass","doi":"10.1016/j.dental.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Water in the adhesive/dentin (a/d) interface plays a crucial role in the quality of the hybrid layer (HL). This study aims to directly measure depth profiles of water content and adhesive monomers within the HL and explore the relationship between adhesive hydrophilicity and water content under wet bonding conditions using two model adhesives.</div></div><div><h3>Methods</h3><div>The occlusal one-third of the crown was removed from six unerupted human third molars. The exposed dentin surfaces were etched with 35 % phosphoric acid for 15 s, followed by the application of model adhesives with varying BisGMA/HEMA ratios (40/60 and 70/30) using the wet bonding technique. After light curing and 24 h of storage in water, the specimens were examined using a confocal Raman microscope under a 100x objective. Raman spectral imaging or mapping was performed at 1-micron intervals across the a/d interface in the Z direction. Reference spectra were obtained from model compounds, including type I collagen, BisGMA, HEMA, water, and the model adhesives, to generate calibration curves. These curves were then used to calculate the weight percentages of the components within the HL, which were subjected to statistical analysis (α = 0.05).</div></div><div><h3>Results</h3><div>Raman imaging shows that the HL is not a uniform structure, exhibiting gradients in both adhesive penetration and dentin demineralization. However, water content consistently remains higher in the HL compared to both the adhesive and underlying dentin. The water content in the HL formed by the model adhesives varies between approximately 9 % and 24 %, depending on location. This water content is strongly influenced by the hydrophobicity of the adhesives, with greater water accumulation at the bottom of the HL when a more hydrophobic adhesive (BisGMA/HEMA = 70/30) is used.</div></div><div><h3>Significance</h3><div>For the first time, the distribution of water, collagen, and adhesive within the HL has been quantified using confocal Raman microscopy combined with z-mapping. This technique allows for direct, nondestructive detection of the HL’s interfacial structure and composition.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"41 4","pages":"Pages 473-481"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564125001277","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Water in the adhesive/dentin (a/d) interface plays a crucial role in the quality of the hybrid layer (HL). This study aims to directly measure depth profiles of water content and adhesive monomers within the HL and explore the relationship between adhesive hydrophilicity and water content under wet bonding conditions using two model adhesives.
Methods
The occlusal one-third of the crown was removed from six unerupted human third molars. The exposed dentin surfaces were etched with 35 % phosphoric acid for 15 s, followed by the application of model adhesives with varying BisGMA/HEMA ratios (40/60 and 70/30) using the wet bonding technique. After light curing and 24 h of storage in water, the specimens were examined using a confocal Raman microscope under a 100x objective. Raman spectral imaging or mapping was performed at 1-micron intervals across the a/d interface in the Z direction. Reference spectra were obtained from model compounds, including type I collagen, BisGMA, HEMA, water, and the model adhesives, to generate calibration curves. These curves were then used to calculate the weight percentages of the components within the HL, which were subjected to statistical analysis (α = 0.05).
Results
Raman imaging shows that the HL is not a uniform structure, exhibiting gradients in both adhesive penetration and dentin demineralization. However, water content consistently remains higher in the HL compared to both the adhesive and underlying dentin. The water content in the HL formed by the model adhesives varies between approximately 9 % and 24 %, depending on location. This water content is strongly influenced by the hydrophobicity of the adhesives, with greater water accumulation at the bottom of the HL when a more hydrophobic adhesive (BisGMA/HEMA = 70/30) is used.
Significance
For the first time, the distribution of water, collagen, and adhesive within the HL has been quantified using confocal Raman microscopy combined with z-mapping. This technique allows for direct, nondestructive detection of the HL’s interfacial structure and composition.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.