{"title":"Cell Sizes Matter for Industrial Bioproduction, a Case of Polyhydroxybutyrate.","authors":"Yi-Ling Chen, Xu Liu, Li-Zhan Zhang, Ji-Shuai Yang, Wei-Ke Guo, Shuang Zheng, Jia-Le Wang, Fu-Qing Wu, Xu Yan, Qiong Wu, Guo-Qiang Chen","doi":"10.1002/advs.202412256","DOIUrl":null,"url":null,"abstract":"<p><p>Most bacterial cells are 1-2 microns in size, limiting intracellular products like polyhydroxyalkanoates (PHA) accumulation. Cell size is regulated by key genes such as mreB and minCD, which encode cellular skeleton protein and control cell fission ring location, respectively. Their expression changes significantly affect microbial growth. This study successfully redesigns the ClpXP protein degradation system by deleting the sspB gene and using mutated SsrA tags with different degradation rates to control MreB degradation. Dynamic degradation of MreB allows non-model bacterium Halomonas bluephagenesis to grow normally and increase cell size simultaneously. Combined with overexpression of minCD, H. bluephagenesis with progressive MreB degradation increases the cell size further, albeit with a reduced growth rate. H. bluephagenesis CYL0307, with the PHB granule-associated protein PhaP1 deleted and phaAB<sub>Re</sub> overexpressed in the MreB-degraded strain, increases cell volume more than nine times compared to the original strain. CYL0307 produces 149 g L<sup>-1</sup> cell dry weight containing 82% PHB after 44 h in a 5000 L bioreactor, with cells containing single large PHB granules, simplifying recovery and purification. These results provide a post-translational gene regulation method in H. bluephagenesis and a strategy for enhancing PHB production via morphological engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412256"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Most bacterial cells are 1-2 microns in size, limiting intracellular products like polyhydroxyalkanoates (PHA) accumulation. Cell size is regulated by key genes such as mreB and minCD, which encode cellular skeleton protein and control cell fission ring location, respectively. Their expression changes significantly affect microbial growth. This study successfully redesigns the ClpXP protein degradation system by deleting the sspB gene and using mutated SsrA tags with different degradation rates to control MreB degradation. Dynamic degradation of MreB allows non-model bacterium Halomonas bluephagenesis to grow normally and increase cell size simultaneously. Combined with overexpression of minCD, H. bluephagenesis with progressive MreB degradation increases the cell size further, albeit with a reduced growth rate. H. bluephagenesis CYL0307, with the PHB granule-associated protein PhaP1 deleted and phaABRe overexpressed in the MreB-degraded strain, increases cell volume more than nine times compared to the original strain. CYL0307 produces 149 g L-1 cell dry weight containing 82% PHB after 44 h in a 5000 L bioreactor, with cells containing single large PHB granules, simplifying recovery and purification. These results provide a post-translational gene regulation method in H. bluephagenesis and a strategy for enhancing PHB production via morphological engineering.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.