Copper Vapor Catalyzing Role in the Growth of Graphene.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuan Chang, Shiji Li, Tianyu He, Hongsheng Liu, Junfeng Gao
{"title":"Copper Vapor Catalyzing Role in the Growth of Graphene.","authors":"Yuan Chang, Shiji Li, Tianyu He, Hongsheng Liu, Junfeng Gao","doi":"10.1021/acs.jpclett.4c03481","DOIUrl":null,"url":null,"abstract":"<p><p>Cu is the most used substrate to grow monolayer graphene under a temperature near the melting point. In this study, we elaborated a remarkable amount of Cu clusters were continuously evaporated during the graphene growth, resulting in the vapor pressure comparable with the CH<sub>4</sub>. Importantly, the decomposition barrier of CH<sub>4</sub> on Cu clusters is similar to or even lower than that on the Cu surface. CuCH<sub>4</sub> serves as the primary active cluster in complex intermediates, exhibiting a growth-promoting effect. Particularly after the first graphene layer coverage, it may emerge as a dominant catalytic factor for multilayer growth by supplying critical growth species. Through controlled seed incorporation, this mechanism is expected to enable large-area controllable growth of bilayer and multilayer graphene structures.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"2057-2063"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03481","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu is the most used substrate to grow monolayer graphene under a temperature near the melting point. In this study, we elaborated a remarkable amount of Cu clusters were continuously evaporated during the graphene growth, resulting in the vapor pressure comparable with the CH4. Importantly, the decomposition barrier of CH4 on Cu clusters is similar to or even lower than that on the Cu surface. CuCH4 serves as the primary active cluster in complex intermediates, exhibiting a growth-promoting effect. Particularly after the first graphene layer coverage, it may emerge as a dominant catalytic factor for multilayer growth by supplying critical growth species. Through controlled seed incorporation, this mechanism is expected to enable large-area controllable growth of bilayer and multilayer graphene structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信