Self-Powered Artificial Neuron Devices: Towards the All-In-One Perception and Computation System.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tong Zheng, Xinkai Xie, Qiongfeng Shi, Jun Wu, Cunjiang Yu
{"title":"Self-Powered Artificial Neuron Devices: Towards the All-In-One Perception and Computation System.","authors":"Tong Zheng, Xinkai Xie, Qiongfeng Shi, Jun Wu, Cunjiang Yu","doi":"10.1002/adma.202416897","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for energy supply in sensing units and the computational efficiency of computation units has prompted researchers to explore novel, integrated technology that offers high efficiency and low energy consumption. Self-powered sensing technology enables environmental perception without external energy sources, while neuromorphic computation provides energy-efficient and high-performance computing capabilities. The integration of self-powered sensing technology and neuromorphic computation presents a promising solution for an all-in-one system. This review examines recent developments and advancements in self-powered artificial neuron devices based on triboelectric, piezoelectric, and photoelectric effects, focusing on their structures, mechanisms, and functions. Furthermore, it compares the electrical characteristics of various types of self-powered artificial neuron devices and discusses effective methods for enhancing their performance. Additionally, this review provides a comprehensive summary of self-powered perception systems, encompassing tactile, visual, and auditory perception systems. Moreover, it elucidates recently integrated systems that combine perception, computing, and actuation units into all-in-one configurations, aspiring to realize closed-loop control. The seamless integration of self-powered sensing and neuromorphic computation holds significant potential for shaping a more intelligent future for humanity.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2416897"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416897","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for energy supply in sensing units and the computational efficiency of computation units has prompted researchers to explore novel, integrated technology that offers high efficiency and low energy consumption. Self-powered sensing technology enables environmental perception without external energy sources, while neuromorphic computation provides energy-efficient and high-performance computing capabilities. The integration of self-powered sensing technology and neuromorphic computation presents a promising solution for an all-in-one system. This review examines recent developments and advancements in self-powered artificial neuron devices based on triboelectric, piezoelectric, and photoelectric effects, focusing on their structures, mechanisms, and functions. Furthermore, it compares the electrical characteristics of various types of self-powered artificial neuron devices and discusses effective methods for enhancing their performance. Additionally, this review provides a comprehensive summary of self-powered perception systems, encompassing tactile, visual, and auditory perception systems. Moreover, it elucidates recently integrated systems that combine perception, computing, and actuation units into all-in-one configurations, aspiring to realize closed-loop control. The seamless integration of self-powered sensing and neuromorphic computation holds significant potential for shaping a more intelligent future for humanity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信