Large-Scale 2D Perovskite Nanocrystals Photodetector Array via Ultrasonic Spray Synthesis.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yoon Ho Lee, Won-June Lee, Gang San Lee, Jee Yung Park, Biao Yuan, Yousang Won, Jungho Mun, Hanjun Yang, Sung-Doo Baek, Haeun Lee, Joon Hak Oh, Timothy J Pennycook, Gwangwoo Kim, Jianguo Mei, Letian Dou
{"title":"Large-Scale 2D Perovskite Nanocrystals Photodetector Array via Ultrasonic Spray Synthesis.","authors":"Yoon Ho Lee, Won-June Lee, Gang San Lee, Jee Yung Park, Biao Yuan, Yousang Won, Jungho Mun, Hanjun Yang, Sung-Doo Baek, Haeun Lee, Joon Hak Oh, Timothy J Pennycook, Gwangwoo Kim, Jianguo Mei, Letian Dou","doi":"10.1002/adma.202417761","DOIUrl":null,"url":null,"abstract":"<p><p>2D perovskite (PVSK) single crystals have received significant attention due to their unique optical and optoelectronic properties. However, current synthesis methods face limitations, particularly in large-area fabrication, which remain critical barriers to practical applications. In this study, the synthesis of red/green/purple-blue-colored 2D PVSK nanocrystals over a large area (4-inch wafer) and the fabrication of high-performance photodetector arrays are presented via a facile yet efficient spray-coating approach with a liquid-bridge transport effect. The photodetector array achieves 100% working yield, high photo-responsivity (1.5 × 10<sup>6</sup> A W<sup>-1</sup>) and specific-detectivity (1.1 × 10<sup>16</sup> Jones) with competitive photomapping characteristics. An intelligent vision system for automatic shape recognition is further demonstrated with a recognition rate exceeding 90%. This study provides significant advances in the scalable synthesis of nanoscale 2D PVSK crystals, their integration into large-area optoelectronic devices, and their potential use in artificial-intelligence systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2417761"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417761","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D perovskite (PVSK) single crystals have received significant attention due to their unique optical and optoelectronic properties. However, current synthesis methods face limitations, particularly in large-area fabrication, which remain critical barriers to practical applications. In this study, the synthesis of red/green/purple-blue-colored 2D PVSK nanocrystals over a large area (4-inch wafer) and the fabrication of high-performance photodetector arrays are presented via a facile yet efficient spray-coating approach with a liquid-bridge transport effect. The photodetector array achieves 100% working yield, high photo-responsivity (1.5 × 106 A W-1) and specific-detectivity (1.1 × 1016 Jones) with competitive photomapping characteristics. An intelligent vision system for automatic shape recognition is further demonstrated with a recognition rate exceeding 90%. This study provides significant advances in the scalable synthesis of nanoscale 2D PVSK crystals, their integration into large-area optoelectronic devices, and their potential use in artificial-intelligence systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信