Bollard-Anchored Binder System for High-Loading Cathodes Fabricated via Dry Electrode Process for Li-Ion Batteries.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jihyeon Kang, Hojong Eom, Seohyeon Jang, Doehyeob Yoo, Hyeonha Lee, Minju Kim, Myeong-Lok Seol, Jeong Woo Han, Inho Nam, Hannah Song
{"title":"Bollard-Anchored Binder System for High-Loading Cathodes Fabricated via Dry Electrode Process for Li-Ion Batteries.","authors":"Jihyeon Kang, Hojong Eom, Seohyeon Jang, Doehyeob Yoo, Hyeonha Lee, Minju Kim, Myeong-Lok Seol, Jeong Woo Han, Inho Nam, Hannah Song","doi":"10.1002/adma.202416872","DOIUrl":null,"url":null,"abstract":"<p><p>The dry battery electrode (DBE) process offers significant advantages over conventional wet-coating methods for electrode fabrication. Unlike traditional processes that rely on toxic solvents such as N-methyl-2-pyrrolidone (NMP), the DBE technique uses solvent-free methods, reducing environmental impact and production costs while enhancing compatibility and performance. However, polytetrafluoroethylene (PTFE), the only binder currently used for large-scale DBE fabrication (binder fibrillation), faces potential regulatory restrictions under Polyfluoroalkyl Substances (PFAS) guidelines and limits Li-ion conductivity, elastomeric properties, and particle adhesion. This study explores a novel dual-binder system, termed the \"bollard hitch\" model, designed to overcome these limitations as the first PTFE-less binder for binder fibrillation. Poly(acrylic acid)-grafted sodium carboxymethyl cellulose (PC) acts as the \"bollard,\" strongly attaching to the PTFE \"anchor.\" This binder system reduces PTFE usage by over 70% and enables the fabrication of high-mass loading cathodes (up to 90 mg cm<sup>-</sup> <sup>2</sup>, 15.6 mAh cm<sup>-</sup> <sup>2</sup>) with superior performance. It enhances ionic conductivity and mechanical strength, making it suitable for high-voltage applications and offering great potential to revolutionize the manufacturing of high-performance, durable energy storage systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2416872"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416872","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dry battery electrode (DBE) process offers significant advantages over conventional wet-coating methods for electrode fabrication. Unlike traditional processes that rely on toxic solvents such as N-methyl-2-pyrrolidone (NMP), the DBE technique uses solvent-free methods, reducing environmental impact and production costs while enhancing compatibility and performance. However, polytetrafluoroethylene (PTFE), the only binder currently used for large-scale DBE fabrication (binder fibrillation), faces potential regulatory restrictions under Polyfluoroalkyl Substances (PFAS) guidelines and limits Li-ion conductivity, elastomeric properties, and particle adhesion. This study explores a novel dual-binder system, termed the "bollard hitch" model, designed to overcome these limitations as the first PTFE-less binder for binder fibrillation. Poly(acrylic acid)-grafted sodium carboxymethyl cellulose (PC) acts as the "bollard," strongly attaching to the PTFE "anchor." This binder system reduces PTFE usage by over 70% and enables the fabrication of high-mass loading cathodes (up to 90 mg cm- 2, 15.6 mAh cm- 2) with superior performance. It enhances ionic conductivity and mechanical strength, making it suitable for high-voltage applications and offering great potential to revolutionize the manufacturing of high-performance, durable energy storage systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信