Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Zitao Wang, Jian Guo, Wenxuan Luo, Shiduo Niu, Lingling Qu, Jing Li, Yanping Chen, Guanghao Li, Huan Yang, Dalei Lu
{"title":"Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress.","authors":"Zitao Wang, Jian Guo, Wenxuan Luo, Shiduo Niu, Lingling Qu, Jing Li, Yanping Chen, Guanghao Li, Huan Yang, Dalei Lu","doi":"10.1111/pce.15437","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf senescence induced by high temperature (HT) has become a primary factor limiting maize yield, particularly during the filling stage. Exogenous salicylic acid (SA) has emerged as an effective strategy to mitigate leaf senescence and HT-induced damage, though its underlying mechanisms remain unclear. This study investigated the regulatory mechanism of SA application on waxy maize subjected to HT during the early filling stage. Compared to HT alone, exogenous SA alleviated the inhibition of photosynthesis and oxidative damage by enhancing the activities of enzymes involved in photosynthesis and antioxidant system and modulating phytohormone metabolism and signal transduction pathways, thereby reducing leaf senescence and mitigating yield loss under HT. Transcriptomic and metabolomic analyses showed that HT downregulated most genes involved in the starch and sucrose metabolism pathway in leaves but promoted soluble sugar accumulation, which represents a plant strategy to cope with HT. Conversely, exogenous SA reversed this change and further enhanced soluble sugar accumulation in leaves. SA also regulated sugar metabolism by inhibiting trehalose-6-phosphate synthesis and activating SnRK1 to resist HT. Furthermore, SA stimulated lignin biosynthesis through the phenylpropanoid pathway, ensuring cell membrane integrity under HT. The relationship between SA signalling and plant heat tolerance was validated using a maize SA synthesis-synthetic mutant.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15437","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf senescence induced by high temperature (HT) has become a primary factor limiting maize yield, particularly during the filling stage. Exogenous salicylic acid (SA) has emerged as an effective strategy to mitigate leaf senescence and HT-induced damage, though its underlying mechanisms remain unclear. This study investigated the regulatory mechanism of SA application on waxy maize subjected to HT during the early filling stage. Compared to HT alone, exogenous SA alleviated the inhibition of photosynthesis and oxidative damage by enhancing the activities of enzymes involved in photosynthesis and antioxidant system and modulating phytohormone metabolism and signal transduction pathways, thereby reducing leaf senescence and mitigating yield loss under HT. Transcriptomic and metabolomic analyses showed that HT downregulated most genes involved in the starch and sucrose metabolism pathway in leaves but promoted soluble sugar accumulation, which represents a plant strategy to cope with HT. Conversely, exogenous SA reversed this change and further enhanced soluble sugar accumulation in leaves. SA also regulated sugar metabolism by inhibiting trehalose-6-phosphate synthesis and activating SnRK1 to resist HT. Furthermore, SA stimulated lignin biosynthesis through the phenylpropanoid pathway, ensuring cell membrane integrity under HT. The relationship between SA signalling and plant heat tolerance was validated using a maize SA synthesis-synthetic mutant.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信