{"title":"Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress.","authors":"Zitao Wang, Jian Guo, Wenxuan Luo, Shiduo Niu, Lingling Qu, Jing Li, Yanping Chen, Guanghao Li, Huan Yang, Dalei Lu","doi":"10.1111/pce.15437","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf senescence induced by high temperature (HT) has become a primary factor limiting maize yield, particularly during the filling stage. Exogenous salicylic acid (SA) has emerged as an effective strategy to mitigate leaf senescence and HT-induced damage, though its underlying mechanisms remain unclear. This study investigated the regulatory mechanism of SA application on waxy maize subjected to HT during the early filling stage. Compared to HT alone, exogenous SA alleviated the inhibition of photosynthesis and oxidative damage by enhancing the activities of enzymes involved in photosynthesis and antioxidant system and modulating phytohormone metabolism and signal transduction pathways, thereby reducing leaf senescence and mitigating yield loss under HT. Transcriptomic and metabolomic analyses showed that HT downregulated most genes involved in the starch and sucrose metabolism pathway in leaves but promoted soluble sugar accumulation, which represents a plant strategy to cope with HT. Conversely, exogenous SA reversed this change and further enhanced soluble sugar accumulation in leaves. SA also regulated sugar metabolism by inhibiting trehalose-6-phosphate synthesis and activating SnRK1 to resist HT. Furthermore, SA stimulated lignin biosynthesis through the phenylpropanoid pathway, ensuring cell membrane integrity under HT. The relationship between SA signalling and plant heat tolerance was validated using a maize SA synthesis-synthetic mutant.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15437","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf senescence induced by high temperature (HT) has become a primary factor limiting maize yield, particularly during the filling stage. Exogenous salicylic acid (SA) has emerged as an effective strategy to mitigate leaf senescence and HT-induced damage, though its underlying mechanisms remain unclear. This study investigated the regulatory mechanism of SA application on waxy maize subjected to HT during the early filling stage. Compared to HT alone, exogenous SA alleviated the inhibition of photosynthesis and oxidative damage by enhancing the activities of enzymes involved in photosynthesis and antioxidant system and modulating phytohormone metabolism and signal transduction pathways, thereby reducing leaf senescence and mitigating yield loss under HT. Transcriptomic and metabolomic analyses showed that HT downregulated most genes involved in the starch and sucrose metabolism pathway in leaves but promoted soluble sugar accumulation, which represents a plant strategy to cope with HT. Conversely, exogenous SA reversed this change and further enhanced soluble sugar accumulation in leaves. SA also regulated sugar metabolism by inhibiting trehalose-6-phosphate synthesis and activating SnRK1 to resist HT. Furthermore, SA stimulated lignin biosynthesis through the phenylpropanoid pathway, ensuring cell membrane integrity under HT. The relationship between SA signalling and plant heat tolerance was validated using a maize SA synthesis-synthetic mutant.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.