Drop splitting on hydrophobic wedge-shaped tips after central impact: effect of sharpness and wetting properties.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-02-19 DOI:10.1039/d4sm01373e
Xiaoteng Zhou, Diego Diaz, Zhongyuan Ni, Sajjad Shumaly, Jie Liu, Michael Kappl, Hans-Jürgen Butt
{"title":"Drop splitting on hydrophobic wedge-shaped tips after central impact: effect of sharpness and wetting properties.","authors":"Xiaoteng Zhou, Diego Diaz, Zhongyuan Ni, Sajjad Shumaly, Jie Liu, Michael Kappl, Hans-Jürgen Butt","doi":"10.1039/d4sm01373e","DOIUrl":null,"url":null,"abstract":"<p><p>Drop impact on a wedged structure is a common phenomenon in daily life and industry. Although drop impact has been studied extensively since high-speed cameras have become available, little is known about drop impact on wedge tips of these structures. Here, we combine experiments and volume-of-fluid simulations to determine how velocity, the sharpness of the structure, and the surface wettability influence the outcome. The central impact of water drops onto wedge tips coated with superhydrophobic nanofilaments or with hydrophobic polystyrene (PS) was imaged. On superhydrophobic surfaces, drops fully rebound or split after impact. On hydrophobic PS surfaces, drops are deposited or split. A critical Weber number (We) was used to describe the transition between deposition/rebounding and splitting. It increases with the top width of the wedge tip and its top angle. The critical We and drop behavior is also affected by wetting properties which determine the drop adhesion and lateral drop friction. Our investigations may help to design new structures to prevent icing or produce tiny drops efficiently in applications.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01373e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drop impact on a wedged structure is a common phenomenon in daily life and industry. Although drop impact has been studied extensively since high-speed cameras have become available, little is known about drop impact on wedge tips of these structures. Here, we combine experiments and volume-of-fluid simulations to determine how velocity, the sharpness of the structure, and the surface wettability influence the outcome. The central impact of water drops onto wedge tips coated with superhydrophobic nanofilaments or with hydrophobic polystyrene (PS) was imaged. On superhydrophobic surfaces, drops fully rebound or split after impact. On hydrophobic PS surfaces, drops are deposited or split. A critical Weber number (We) was used to describe the transition between deposition/rebounding and splitting. It increases with the top width of the wedge tip and its top angle. The critical We and drop behavior is also affected by wetting properties which determine the drop adhesion and lateral drop friction. Our investigations may help to design new structures to prevent icing or produce tiny drops efficiently in applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信