Xiaoteng Zhou, Diego Diaz, Zhongyuan Ni, Sajjad Shumaly, Jie Liu, Michael Kappl, Hans-Jürgen Butt
{"title":"Drop splitting on hydrophobic wedge-shaped tips after central impact: effect of sharpness and wetting properties.","authors":"Xiaoteng Zhou, Diego Diaz, Zhongyuan Ni, Sajjad Shumaly, Jie Liu, Michael Kappl, Hans-Jürgen Butt","doi":"10.1039/d4sm01373e","DOIUrl":null,"url":null,"abstract":"<p><p>Drop impact on a wedged structure is a common phenomenon in daily life and industry. Although drop impact has been studied extensively since high-speed cameras have become available, little is known about drop impact on wedge tips of these structures. Here, we combine experiments and volume-of-fluid simulations to determine how velocity, the sharpness of the structure, and the surface wettability influence the outcome. The central impact of water drops onto wedge tips coated with superhydrophobic nanofilaments or with hydrophobic polystyrene (PS) was imaged. On superhydrophobic surfaces, drops fully rebound or split after impact. On hydrophobic PS surfaces, drops are deposited or split. A critical Weber number (We) was used to describe the transition between deposition/rebounding and splitting. It increases with the top width of the wedge tip and its top angle. The critical We and drop behavior is also affected by wetting properties which determine the drop adhesion and lateral drop friction. Our investigations may help to design new structures to prevent icing or produce tiny drops efficiently in applications.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836601/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01373e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drop impact on a wedged structure is a common phenomenon in daily life and industry. Although drop impact has been studied extensively since high-speed cameras have become available, little is known about drop impact on wedge tips of these structures. Here, we combine experiments and volume-of-fluid simulations to determine how velocity, the sharpness of the structure, and the surface wettability influence the outcome. The central impact of water drops onto wedge tips coated with superhydrophobic nanofilaments or with hydrophobic polystyrene (PS) was imaged. On superhydrophobic surfaces, drops fully rebound or split after impact. On hydrophobic PS surfaces, drops are deposited or split. A critical Weber number (We) was used to describe the transition between deposition/rebounding and splitting. It increases with the top width of the wedge tip and its top angle. The critical We and drop behavior is also affected by wetting properties which determine the drop adhesion and lateral drop friction. Our investigations may help to design new structures to prevent icing or produce tiny drops efficiently in applications.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.